Julien ROTH Maître de conférences en mathématiques Laboratoire d'Analyse et de Mathématiques Appliquées (UMR 8050),
UFR de Mathématiques.
Cité Descartes, Bâtiment Copernic, Bureau 4B060
5, boulevard Descartes, Champs sur Marne
77454 Marne-la-Vallée Cedex 2
E-mail: julien.roth[at]u-pem.fr
Tel: 01 60 95 76 81
PUBLICATIONS
A note on starshaped hypersurfaces with almost constant mean curvature in space forms (avec Abhitosh Upadhyay), Preprint 2022, 9 pages, soumis.
Spinorial Representation of submanifolds in a product of space forms (avec Alicia Basilio, Pierre Bayard et Marie-Amélie Lawn), Preprint 2022, 33 pages, soumis.
Extrinsic upper bounds for the first eigenvalue of the p-Steklov problem on submanifolds. Communications in Mathematics Vol 30 no 1 (2022), article 5, 12 pages.
A fundamental theorem for submanifolds of multiproducts of real space forms (avec Marie-Amélie Lawn), Advances in Geometry Vol 17 no 3 (2017), pp 323-338.
Complex and Lagrangian surfaces of the complex projective space via Kählerian Killing Spinc spinors (avec Roger Nakad), Journal of Geometry and Physics Vol 116 (2017), pp 316-329.
General Reilly-type inequalities for submanifolds of weighted Euclidean spaces, Colloquium Mathematicum Vol 144 no 1 (2016), pp 127-136.
Lower bounds for the eigenvalues of the Spinc Dirac operator on manifolds with boundary (avec Roger Nakad), Comptes-rendus - Mathématique Vol 354 no 4 (2016), pp 425-431.
Lower bounds for the eigenvalues of the Spinc Dirac operator on submanifolds (avec Roger Nakad), Archiv der Mathematik, Vol 104 no 5 (2015), pp 451-461.
A note on biharmonic submanifolds of product spaces,
Journal of Geometry Vol 104 no 2 (2013), pp 375-381.
Upper bounds for the first eigenvalue of the Laplacian in terms of anisiotropic mean curvatures,
Results in Mathematics Vol 64 no 3-4 (2013), pp 383-403.
Pinching of the first eigenvalue of the Laplacian and almost-Einstein hypersurfaces of Euclidean space,
Annals of Global Analysis and Geometry Vol 33 no.3 (2008) pp 293-306.
Extrinsic radius pinching in space forms with nonnegative sectional curvature,
Mathematische Zeitschrift Vol 258 no.1 (2008) pp 227-240.
Thèse:Rigidité des hypersurfaces en géométrie riemannienne et spinorielle: aspect extrinsèque et inrtinsèque (128 pages). Thèse sous la direction d'Oussama Hijazi et Jean-François Grosjean (2006)