Covering numbers and "low M^*-estimate" for quasi-convex bodies. *

A.E. Litvak † V.D. Milman † A. Pajor

Abstract

This article gives estimates on covering numbers and diameters of random proportional sections and projections of quasi-convex bodies in \mathbb{R}^n. These results were known for the convex case and played an essential role in development of the theory. Because duality relations can not be applied in the quasi-convex setting, new ingredients were introduced that give new understanding for the convex case as well.

1. Introduction and notation.

Let $|\cdot|$ be on \mathbb{R}^n. Let D be an ellipsoid associated with this norm. Denote $A = \frac{1}{n} \int_{S^{n-1}} \sqrt{\sum_{i=1}^{k} x_i^2} \, d\sigma(x)$, where σ is the normalized rotation invariant measure on the euclidean sphere S^{n-1}. Then $A = A(n,k) < 1$ and $A \to 1$ as $n,k \to \infty$. For any star-body K in \mathbb{R}^n define $M_K = \int_{S^{n-1}} \| x \| \, d\sigma(x)$, where $\| x \|$ is the gauge of K. Let M_K^0 be M_K^0, where K^0 is the polar of K. For any subsets K_1, K_2 of \mathbb{R}^n denote by $N(K_1,K_2)$ the smallest number N such that there are N points y_1, \ldots, y_N in K_1 such that

$$K_1 \subset \bigcup_{i=1}^{N} (y_i + K_2).$$

Recall that a body K is called quasi-convex if there is a constant c such that $K + K \subset cK$, and given a $p \in (0, 1]$ a body K is called p-convex if for any $\lambda, \mu > 0$ satisfying $\lambda^p + \mu^p = 1$ and any points $x, y \in K$ the point $\lambda x + \mu y$ belongs to K.

*This research was done while authors visited MSRI; we thanks the Institute for its hospitality
†Research partially supported by BSF
Note that for the gauge \(\| \cdot \| = \| \cdot \|_K \) associated with the the quasi-convex (p-convex) body \(K \) the following inequality holds for any \(x, y \in \mathbb{R}^n \)

\[
\| x + y \| \leq C \max\{ \| x \|, \| y \| \} \quad (\| x + y \|_p \leq \| x \|_p + \| y \|_p).
\]

In particular, every p-convex body \(K \) is also quasi-convex one and \(K + K \subset 2^{1/p} K \). A more delicate result is that for every quasi-convex body \(K \) \((K + K \subset cK)\) there exists a q-convex body \(K_0 \) such that \(K \subset K_0 \subset 2cK \), where \(2^{1/q} = 2c \). This is Aoki-Rogers theorem ([KPR], [R], see also [K], p.47). In this note by a body we always mean a compact star-body, i.e. a body \(K \) satisfying \(tK \subset K \) for all \(t \in [0, 1] \).

Let us remind of the so-called "low \(M^*\)-estimate" result.

Theorem 1 Let \(\lambda > 0 \) and \(n \) be large enough. Let \(K \) be a centrally-symmetric convex body in \(\mathbb{R}^n \) and \(\| \cdot \| \) be the gauge of \(K \). Then there exists a subspace \(E \) of \((\mathbb{R}^n, \| \cdot \|) \) such that \(\dim E = \lfloor \lambda n \rfloor \) and for any \(x \in E \) the following inequality holds

\[
\| x \| \geq \frac{f(\lambda)}{M^*_K} |x|
\]

for some function \(f(\lambda) \), \(0 < \lambda < 1 \).

Remark. Inequality of this type was first proved in [M1] with very poor dependence on \(\lambda \) and then improved in [M2] to \(f(\lambda) = C(1 - \lambda) \). It was later shown ([PT]), that one can take \(f(\lambda) = C\sqrt{1 - \lambda} \) (for different proofs see [M3] and [G]).

By duality this theorem is equivalent to the following theorem.

Theorem 1' Let \(\lambda > 0 \) and \(n \) be large enough. For every centrally-symmetric convex body \(K \) in \(\mathbb{R}^n \) there exists an orthogonal projection \(P \) of rank \(\lfloor \lambda n \rfloor \) such that

\[
PD \subset \frac{M_K}{f(\lambda)} PK.
\]

In this note we will extend both theorems to quasi-convex, not necessary central-symmetric bodies. Because duality arguments can not be applied to a non-convex body these two theorems become different statements. Also "\(M^*_K \)" should be substituted by an appropriate quantity not involving duality. Note that by avoiding the use of convexity assumption we in fact simplified proof also for a convex case.

2. **Main results.**

The following theorem is an extension of Theorem 1'.

2
Theorem 2 Let $\lambda > 0$ and n be large enough ($n > c/(1-\lambda)^2$). For any p-convex body K in \mathbb{R}^n there exists an orthogonal projection P of the rank $[\lambda n]$ such that

$$PD \subset \frac{A_p M_K}{(1-\lambda)^{1+p/p}} PK,$$

where $A_p = \text{const} \frac{\ln(2/p)}{p}$.

Remark. Also, this result is new for the convex non-symmetric case. To appreciate the strength of this inequality apply it to the standard simplex S inscribed in D. Then $M_S \approx \sqrt{n \cdot \log n}$ and therefore for every $\lambda < 1$ there are λn-dimensional projections containing euclidean ball of radius $\approx 1/\sqrt{n \cdot \log n}$. At the same time S contains only a ball of radius $1/n$.

The proof of Theorem 2 is based on the next three lemmas. The first one was proved by W.B.Johnson and J.Lindenstrauss in [JL]. The second one was proved in [PT] for centrally-symmetric convex bodies and is the dual form of Sudakov minoration theorem.

Lemma 1 There is an absolute constant c such that if $\epsilon > \sqrt{c/k}$ and $N \leq 2e^{2k/c}$, then for any set of points $y_1, \ldots, y_N \in \mathbb{R}^n$ and any orthogonal projection P of rank k

$$\mu \left(\{ U \in O_n \mid \forall j : A(1-\epsilon)\sqrt{k/n} |y_j| \leq |PUy_j| \leq A(1+\epsilon)\sqrt{k/n} |y_j| \} \right) > 0.$$

Lemma 2 Let K be a body such that $K + K \subset aK$. Then

$$N(D,tK) \leq 2e^{8n(aM_K/t)^2}.$$

Proof: M. Talagrand gave a direct simple proof of this lemma for a convex case ([LT], pp. 82-83). One can check that his proof does not use symmetry and convexity of the body and produces estimate $N(D,tB) \leq 2e^{2n(aM_B/t)^2}$ for every body B, such that $B - B \subset aB$.

Now for a body K, satisfying $K + K \subset aK$ denote $B = K \cap -K$.

Then $B - B \subset aB$ and $M_B \leq 2M_K$, since

$$\| x \|_B = \max (\| x \|_K, \| x \|_{-K}) \leq \| x \|_K + \| x \|_{-K}.$$

Thus

$$N(D,tK) \leq N(D,tB) \leq 2e^{2n(2aM_K/t)^2}.$$

□
Lemma 3 Let B be a body, K be a p-convex body, $r \in (0, 1)$, $\{x_i\} \subset rB$ and $B \subset \bigcup(x_i + K)$. Then $B \subset t_rK$, where $t_r = \frac{1}{(1-r^p)^{1/p}}$.

Proof: Obviously $t_r = \max\{\|x\|_K \mid x \in B\}$. Since $B \subset \bigcup(x_i + K)$, for any point x in B there are points x_0 in rB and y in K such that $x = x_0 + y$. Then by maximality of t_r and p-convexity of K we have $t_r^p \leq r^p t_r^p + 1$. That proves the lemma. □

Remark. Somewhat similar argument was used by N. Kalton in dealing with p-convex sets.

Proof of Theorem 2:
Any p-convex body K satisfies $K + K \subset aK$ with $a = 2^{1/p}$. By Lemma 2 we have

$$N = N(D, tK) \leq 2 \cdot \exp\left(2^{1+2/p} n(M_K/t)^2\right),$$

i.e. there exist points $x_1, ..., x_N$ in D, such that

$$D \subset \bigcup_{i=1}^N (x_i + tK).$$

Denote $c_p = 2^{1+2/p}$. Let t and ε satisfy

$$c_pm\left(\frac{M_K}{t}\right)^2 \leq \frac{\varepsilon^2 k}{c}$$

and $\varepsilon > \sqrt{c/k}$ for c being the constant from Lemma 1.

Applying Lemma 1 we obtain that there exist an orthogonal projection P of rank k such that

$$PD \subset \bigcup(Px_i + tP) \quad \text{and} \quad |Px_i| \leq (1 + \varepsilon)\sqrt{\frac{k}{n}} |x_i|.$$

Let $\lambda = k/n$. Denote $r = (1 + \varepsilon)\sqrt{\lambda}$. Lemma 3 gives us

$$PD \subset trPK \quad \text{for} \quad t = \frac{\sqrt{c_p} M_K}{\varepsilon \sqrt{\lambda}} \quad \text{and} \quad \varepsilon^2 > \frac{c}{\lambda n}, \quad r < 1.$$

Choose

$$\varepsilon = \frac{1 - \sqrt{\lambda}}{2 \sqrt{\lambda}}.$$
Then for \(n \) large enough we get

\[
PD \subset \frac{A_p M_K}{(1 - \lambda)^{1 + \frac{1}{p}}} PK,
\]

for \(A_p = \text{const} \frac{\ln(2/p)}{p} \). This completes the proof. \(\square \)

Theorem 2 can be formulated in the global form.

Theorem 2' Let \(K \) be a \(p \)-convex body in \(\mathbb{R}^n \). Then there is an orthogonal operator \(U \) such that

\[
D \subset A'_p M_K(K + UK),
\]

where \(A'_p = \text{const} \frac{\ln(2/p)}{p} \).

This theorem can be proved independently, but we show how it follows from Theorem 2.

Proof of Theorem 2': It follows from the proof of Theorem 2 that actually the measure of such projections is large. So we can choose two orthogonal subspaces \(E_1, E_2 \) of \(\mathbb{R}^n \) such that \(\dim E_1 = \lfloor n/2 \rfloor \), \(\dim E_2 = \lceil (n + 1)/2 \rceil \) and

\[
P_i D \subset A''_p M_K P_i K,
\]

where \(P_i \) is the projection on the space \(E_i \) (\(i = 1, 2 \)). Denote \(I = \text{id}_{\mathbb{R}^n} = P_1 + P_2 \) and \(U = P_1 - P_2 \). So \(P_1 = 1/2(I + U) \) and \(P_2 = 1/2(I - U) \). Then \(U \) is an orthogonal operator and for any \(x \in D \) we have

\[
x = P_1 x + P_2 x \subset 1/2 A''_p M_K(I + U)K + 1/2 A''_p M_K(I - U)K \subset A''_p M_K \left(\frac{K + K}{2} + A''_p M_K \frac{UK - UK}{2} \right) = A'_p M_K(K + UK).
\]

That proves Theorem 2'. \(\square \)

Let us complement Lemma 2 by mentioning how covering number \(N(K, tD) \) can be estimated. In the convex case this estimate is given by Sudakov inequality, using quantity \(M^* \). More precisely, if \(K \) is a centrally-symmetric convex body, then

\[
N(K, tD) \leq 2e^{cn(M^*/t)^2}.
\]

Of course, using duality for a non-convex setting leads to a weak result, and we suggest below a substitution for quantity \(M^* \).
For two quasi-convex bodies K, B define the following number
\[M(K, B) = \frac{1}{|K|} \int_K \| x \|_B \, dx, \]
where $|K|$ is volume of K, and $\| x \|_B$ is the gauge of B. Such numbers are considered in [MP1], [MP2] and [BMMP].

Lemma 4 Let K be p-convex body and B be a body. Assume $B - B \subset aB$. Then
\[N(K, tB) \leq 2e^{(cn/p)(aM(K, B)/t)^p}, \]
where c is an absolute constant.

Proof: We follow the idea of M. Talagrand of estimating covering numbers in case $K = D$ ([LT], pp. 82-83, see also [BLM] Proposition 4.2). Denote the gauge of K by $\| \cdot \|$ and the gauge of B by $| \cdot |_B$. Define the measure μ by following
\[d\mu = \frac{1}{A} e^{-\| x \|^p} \, dx, \text{ where } A \text{ is chosen such that } \int_{\mathbb{R}^n} d\mu = 1. \]
Let $L = \int_{\mathbb{R}^n} |x|_B \, d\mu$. Then $\mu\{|x|_B \leq 2L\} \geq 1/2$. Let x_1, x_2, \ldots be a maximal set of points in K such that $|x_i - x_j|_B \geq t$. So the sets $x_i + \frac{t}{d}B$ have mutually disjoint interiors. Let $y_i = \frac{a}{t} x_i$ for some a. Then, by p-convexity of K and convexity of the function e^t, we have
\[\mu\{y_i + aB\} = \frac{1}{A} \int_{bB} e^{-\| x + y_i \|^p} \, dx \geq \frac{1}{A} \int_{bB} e^{(\| x \|^p + \| y_i \|^p)} \, dx = \]
\[= \frac{1}{A} e^{-\| y_i \|^p} \int_{bB} e^{-\| x \|^p} \, dx \geq e^{-(ba/t)p} \mu\{aB\}. \]
Choose $b = 2L$. Then $\mu\{aB\} \geq 1/2$ and, hence,
\[N(K, tB) \leq 2e^{(2aL/|t|)^p}. \]
Now compute L. First, the normalization constant A is equal
\[A = \int_{\mathbb{R}^n} e^{-\| x \|^p} \, dx = \int_{\mathbb{R}^n} \int_0^\infty (-e^{-\| x \|^p})' \, dt \, dx = \int_0^\infty \int_0^\infty t^{p-1} e^{-p \| x \|^p} \, dx \, dt = \]

6
\[= \int_{\mathbb{R}^n} dx \int_0^\infty p t^{p+n-1} e^{-tp} dt = |K| \cdot \Gamma \left(1 + \frac{n}{p} \right), \]

where \(\Gamma \) is the gamma-function. The remaining integral is

\[
\int_{\mathbb{R}^n} |x| B e^{-\|x\|^p} dx = \int_{\mathbb{R}^n} |x| B \left(e^{-\|x\|^p} \right) dx = \int_0^\infty \int_{\|x\| \leq t} \int_{\mathbb{R}^n} |x| B dx dt =
\]

\[
= \int_{\|x\| \leq 1} \int_{\mathbb{R}^n} |x| B dx \int_0^\infty p t^{p+n} e^{-tp} dt = |K| \cdot M(K, B) \cdot \Gamma \left(1 + \frac{n+1}{p} \right). \]

Using Stirling's formula we get

\[L \approx \left(\frac{n}{p} \right)^{1/p} M(K, B). \]

That proves the lemma. \(\square \)

Remark. An analogous lemma for \(p \)-smooth \((1 \leq p \leq 2)\) body \(K \) and convex centrally-symmetric body \(B \) was announced in [MP2]. Of course, the proof holds for all \(p > 0 \) and every quasi-convex centrally-symmetric body \(B \). More precisely the following lemma holds.

Lemma 4’ Let \(K \) and \(B \) be bodies. Let \(B - B \subset aB \) and assume that for some \(p > 0 \) there is a constant \(c_p \) which depends only on \(p \) and body \(K \), such that

\[\| x + y \|_K^p + \| x - y \|_K^p \leq 2 \cdot (\| x \|_K^p + c_p \| y \|_K^p) \text{ for all } x, y \in \mathbb{R}^n. \]

Then

\[N(K, tB) \leq 2e^{cn(c_p/(aM(K,B)/t)^p)}, \]

where \(c \) is an absolute constant.

Lemma 4’ is an extension of Lemma 2 in the symmetric case. Indeed, since Euclidean space is a 2-smooth space, then in case \(K = D \) being an ellipsoid, we have \(c_2(D) = 1 \). By direct computation, \(M(D, B) = \frac{n}{n+1} M_B \). Thus,

\[N(D, tB) \leq 2e^{cn(M_B/ct)^2}. \]

Define the following characteristic of \(K \),

\[\bar{M}_K = \frac{1}{|K|} \int_K |x| dx. \]
Lemma 4 shows that for p-convex body K

$$N(K, tD) \leq 2e^{(cn/p)(2\bar{M}_K/t)^p}.$$

The Theorem 3 follows from this estimate by arguments similar of that in [MP].

Theorem 3 Let $\lambda > 0$ and n be large enough. Let K be a p-convex body in \mathbb{R}^n and $\| \cdot \|$ be the gauge of K. Then there exists subspace E of $(\mathbb{R}^n, \| \cdot \|)$ such that $\dim E = [\lambda n]$ and for any $x \in E$ the following inequality holds

$$\| x \| \geq \frac{(1 - \lambda)^{1/2+1/p}}{a_p \bar{M}_K} |x|,$$

where a_p depends on p only (more precisely $a_p = \text{const}^{\frac{\ln(2p)}{p}}$).

Proof: By Lemma 4 there are points x_1, \ldots, x_N in K, such that $N < c_p n \left(\frac{\bar{M}_K}{t} \right)^p$ and for any $x \in K$ there exists some x_i such that $|x - x_i| < t$. By Lemma 1 there exists an orthogonal projection P on a subspace of dimension δn such that for

$$c_p n \left(\frac{\bar{M}_K}{t} \right)^p < \frac{\varepsilon^2 \delta n}{c} \quad \text{and} \quad \varepsilon > \sqrt{\frac{c}{\delta n}},$$

we have

$$b|x_i| = (1 - \varepsilon)A\sqrt{\delta}|x_i| \leq |P x_i| \leq (1 + \varepsilon)A\sqrt{\delta}|x_i|$$

for every x_i. Let $E = \text{Ker}P$. Then $\dim E = \lambda n$, where $\lambda = 1 - \delta$. Take x in $K \cap E$. There is x_i such that $|x - x_i| < t$. Hence

$$|x| \leq |x - x_i| + |x_i| \leq t + \frac{|P x_i|}{b} = t + \frac{|P(x - x_i)|}{b} \leq$$

$$\leq t + \frac{|x - x_i|}{b} \leq t(1 + \frac{1}{b}) \leq \frac{\text{const} \cdot t}{(1 - \varepsilon) \sqrt{\delta}}.$$

Therefore for n large enough and

$$t = \left(\frac{\text{const} \cdot c_p}{\varepsilon^2 \delta} \right)^{1/p} \bar{M}_K$$

we get

$$\| x \| \geq \frac{\text{const} \cdot \varepsilon^2 (1 - \varepsilon)^{1/2+1/p}}{c_p^{1/p} \bar{M}_K} |x|.$$
To obtain our result take ε, say, equal to $1/2$.

As was noted in [MP2] in some cases $M_K << M^*$ and then Theorem 3 gives better estimate than Theorem 1 even for a convex body (in some range of λ). As an example, $K = B(\mathbb{R}^n)$, $M_K \leq c \cdot n^{-1/2}$, but $M_K^* \geq c \cdot n^{-1/2}(\log n)^{1/2}$ for some absolute constant c.

3. Additional remarks.

In fact, during the proof of Theorem 2 a more general fact was proved.

Fact. Let D be an ellipsoid and K be a p-convex body. Let

$$N(D, K) \leq e^{on}.$$

Denote for an integer $1 \leq k \leq n$ the ratio $\lambda = k/n$. Then for some absolute constant c and

$$\gamma = c \sqrt{\alpha}, \quad k \in (\gamma^2 n, (1 - 2\gamma)^2 n)$$

there exists an orthogonal projection P of rank k such that

$$\left(\frac{p(1 - \sqrt{\lambda})/2}{e_k(D, K)} \right)^{1/p} PD \subset PK.$$

In terms of entropy numbers this means

$$\left(\frac{p(1 - \sqrt{k/n})/2}{e_k(D, K)} \right)^{1/p} PD \subset PK,$$

where $e_k(D, K) = \inf \{ \varepsilon > 0 \mid N(D, \varepsilon K) \leq 2^{k-1} \}$.

It is worth to point out that Theorem 2 can be obtained from this results.

We thank E. Gluskin for his remarks on the first draft of this note.

References

A.E.Litvak Department of Mathematics, Tel Aviv University, Ramat Aviv, Israel.
e-mail: alexandr@math.tau.ac.il

V.D.Milman Department of Mathematics, Tel Aviv University, Ramat Aviv, Israel.
e-mail: vitali@math.tau.ac.il

A.Pajor Université de Marne-la-Vallee, Equipe de Mathématiques, 2 rue de la Butte Verté, 93166 Noisy-le-Grand Cedex, France.
e-mail: pajor@math.univ-mlv.fr