On the Euclidean sections of some Banach and operator spaces

Y. Gordon, O. Guédon, M. Meyer, A. Pajor

1 Introduction.

Following the studies of Milman and Schechtman ([M-S1] [M-S2]) and of [G-G-M] and [G], we investigate here the "large" Euclidean sections of centrally symmetric convex bodies in \mathbb{R}^n, or equivalently, the Banach-Mazur distance of subspaces with "big dimension" of a finite dimensional normed space to an Euclidean space. We give first a general result about subspaces of a normed spaces which possesses a system of vectors satisfying a (C,s)-estimate (see the definition below), and apply these results to give sharp estimates of the distance to ℓ_s^k of k-dimensional subspace of ℓ_n^m for $q > 2$.

We treat then the same problem for subspaces of some normed spaces of operators from \mathbb{R}^n to \mathbb{R}^n, and in particular of Schatten classes, for $q \geq 2$. These results are obtained mainly by the use of Gaussian operators ([G]), and so we obtain random subspaces.

Let E be a n-dimensional normed space. We say that a family u_1, \ldots, u_N of vectors of E, with $N \leq n$, satisfies a (C,s)-estimate for $C > 0$ and $s > 0$, if for all $(t_i^*)_{i=1}^N \in \mathbb{R}^N$ and all $m = 1, \ldots, N$, one has

$$\frac{C}{m^{1/s}} \left(\sum_{i=1}^m (t_i^*)^2 \right)^{1/2} \leq \| \sum_{i=1}^N t_i u_i \| \leq \left(\sum_{i=1}^N t_i^2 \right)^{1/2},$$

where $(t_i^*)_{i=1}^N$ denotes the decreasing rearrangement of the sequence $(|t_i|)_{i=1}^N$.

By a result of Bourgain and Szarek [B-S], there exists a constant $C > 0$ such that for any n, any n-dimensional normed space contains a sequence u_1, \ldots, u_N, with $N \geq \frac{n}{2}$, satisfying a $(C,2)$-estimate. We shall be interested here with $s \geq 2$. It is easy to see that for $q \geq 2$, ℓ_q^n satisfies a $(1,s)$-estimate, with $\frac{1}{s} = \frac{1}{2} - \frac{1}{q'}$. It may be also observed that if we define $s' > 0$ by $\frac{1}{s'} = \frac{1}{s} - \frac{1}{\ln(n)}$, and if (u_1, \ldots, u_N) satisfies a (C,s)-estimate, then it satisfies also a $(C/e, s')$-estimate; so one can restrict the study to the case when
s \leq \ln(n)$. Finally, we denote by $d(E, F)$ the Banach-Mazur distance between two normed spaces E and F.

Let us recall the following estimates for the norm of Gaussian operators: if E is a Banach space and $(v_j)_{j=1}^N \in E$, we define a Gaussian operator $G_\omega : \ell^2_2 \to E$ by

$$G_\omega = \sum_{i=1}^k \sum_{j=1}^N g_{ij}(\omega) e_i \otimes v_j : \ell^2_2 \to E,$$

where (e_1, \ldots, e_k) denotes the canonical basis of ℓ^2_k and g_{ij} are pairwise independent real Gaussian random variables for $1 \leq i \leq k, 1 \leq j \leq N$. We have the following inequalities [G] :

$$\mathbb{E} \left[\sum_{j=1}^N g_j v_j \right] - a_k \sup_{1 \leq j \leq N} t_j^2 = 1 \quad \sum_{j=1}^N t_j v_j \leq \mathbb{E} \inf_{|x|=1} ||G_\omega(x)|| \tag{2}$$

and

$$\mathbb{E} \sup_{|x|=1} ||G_\omega(x)|| \leq \mathbb{E} \left[\sum_{j=1}^N g_j v_j \right] + a_k \sup_{1 \leq j \leq N} t_j^2 = 1 \quad \sum_{j=1}^N t_j v_j \tag{3}$$

with

$$a_k = \sqrt{2 \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)}} \leq \sqrt{k}.$$

2 Euclidean sections of Banach spaces.

The main result of this part is

Theorem 1 Let E be a n-dimensional normed space, and for $n \geq N \geq n/2$, let $(u_i)_{i=1}^N \in E$ satisfy a (C, s)-estimate for $s > 2$ and $C > 0$. Let q satisfy $\frac{1}{s} = \frac{1}{2} - \frac{1}{q}$. Then for some universal constants c_i, d_i, $1 \leq i \leq 3$, and for all integers k, $1 \leq k \leq N$, there exists a k-dimensional subspace F^k of E such that

(i) If $k \leq \frac{1}{2} \left(\mathbb{E} \left[\sum_{j=1}^N g_j u_j \right] \right)^2$, then $d(F^k, \ell^2_2) \leq 3$.

(ii) If $\frac{1}{4} \left(\mathbb{E} \left[\sum_{j=1}^N g_j u_j \right] \right)^2 \leq k \leq \frac{1}{2} \left(\mathbb{E} \left[\sum_{j=1}^N g_j u_j \right] \right)^2$, then $d(F^k, \ell^2_2) \leq \frac{d_1 \sqrt{k}}{C \sqrt{q} n^{1/q}}$.

(iii) If $c_1 q e^{-q_n} \leq k \leq c_2 n$, $d(F^k, \ell^2_2) \leq \frac{d_2 k^{1/2 - 1/q}}{C \ln(1 + n/k)}$.
(iv) If $c_2 n \leq k \leq N$, then $d(F^k, \ell_2^k) \leq d_0 k^{1/s}$.

Moreover, the spaces F^k, $1 \leq k \leq N$, can be chosen randomly with high probability as subspaces of the linear span of $(u_i)_{i=1}^N$.

Proof:

Let $U = \text{span} \{u_1, \ldots, u_N\}$; we define a Gaussian operator $G_\omega : \ell_2^k \to U$ by

$$G_\omega = \sum_{i=1}^k \sum_{j=1}^N g_{ij}(\omega)e_i \otimes u_j.$$

Observe that $\sup_{|x|=1} \| \sum_{j=1}^N t_j u_j \| \leq 1$. Applying (2) and (3), we get

1. If $k \leq \frac{1}{4}(\mathbb{E} \| \sum_{j=1}^N g_j u_j \|)^2$, then

$$\mathbb{E} \sup_{|x|=1} \| G_\omega(x) \| \leq \left(1 + \frac{a_k}{\mathbb{E} \| \sum_{j=1}^N g_j u_j \|} \right) \left(1 - \frac{a_k}{\mathbb{E} \| \sum_{j=1}^N g_j u_j \|} \right) \leq 3.$$

So, there exists ω_0 such that $\dim(\text{Im } G_{\omega_0}) = k$ and

$$\sup_{|x|=1} \| G_{\omega_0}(x) \| \leq \frac{1}{\mathbb{E} \| \sum_{j=1}^N g_j u_j \|} \| G_{\omega_0}(x) \| \leq 3.$$

Let $F^k = \text{Im } G_{\omega_0}$; then $\dim F^k = k$, $d(F^k, \ell_2^k) \leq 3$ and case (i) is proved (it is the classical Dvoretzky’s theorem).

2. In the other cases, one has $k \geq \frac{1}{4}(\mathbb{E} \| \sum_{j=1}^N g_j u_j \|)^2$ so that

$$\mathbb{E} \sup_{|x|=1} \| G_\omega(x) \| \leq 3\sqrt{k}.$$
For $1 \leq m \leq N$, in order to get a better lower bound for $\mathbb{E} \inf_{|x|=1} \|G_\omega(x)\|$, we define a new norm $\|y\|_m$ on U. For all $y \in U$, $y = \sum_{j=1}^N y_j u_j$, let

$$
\|y\|_m = \|\sum_{j=1}^N y_j u_j\|_m = \frac{C}{m^{1/s}} \left(\sum_{i=1}^m (y_i^*)^2 \right)^{1/2}.
$$

It is clear from (1) that $\|G_\omega(x)\| \geq \|G_\omega(x)\|_m$. By inequality (2) applied to $G_\omega : \ell^k_2 \to (U, \| \cdot \|_m)$, we get

$$
\mathbb{E} \inf_{|x|=1} \|G_\omega(x)\| \geq \mathbb{E} \inf_{|x|=1} \|G_\omega(x)\|_m
\geq \mathbb{E} \|\sum_{j=1}^N g_j u_j\|_m - a_k \sum_{1 \leq j \leq N} t_j^2 = 1 \|\sum_{j=1}^N t_j u_j\|_m
\geq \frac{1}{m^{1/s}} \left(C \mathbb{E} \left(\sum_{i=1}^m (g_i^*)^2 \right)^{1/2} - \sqrt{k} \right).
\geq m^{1/q} \left(C \sqrt{\ln(1 + \frac{N}{m})} - \sqrt{\frac{k}{m}} \right),
$$

the last inequality following from classical estimates of $\mathbb{E} \left(\sum_{i=1}^m (g_i^*)^2 \right)^{1/2}$ (see for instance [Gl]).

- If $k \leq ce^{-q}n$, we choose $m = Ne^{-q}$. Since $N \geq n/2$, we get

$$
\mathbb{E} \sup_{|x|=1} \|G_\omega(x)\| \leq \frac{c \sqrt{k}}{C \sqrt{q} n^{1/q}}
$$

and we conclude like in 1..

- If $ce^{-q}n \leq k \leq cn$, we choose $m = k$. We have then

$$
\mathbb{E} \sup_{|x|=1} \|G_\omega(x)\| \leq \frac{ck^{1/s}}{C \ln(1 + n/k)}
$$

and as before, we get (iii).

- If $cn \leq k \leq N$, then by the definition of the (C, s)-estimate, one has $d(U, \ell^k_2) \leq N^{1/s}$; thus every k-dimensional subspace F^k of U satisfies

$$
d(F^k, \ell^k_2) \leq N^{1/s} \leq n^{1/s} \leq \left(\frac{k}{c} \right)^{1/s}.
$$
Remark

Using inequality (1), it is easy to prove that

$$\mathbb{E} \| \sum_{j=1}^{N} g_j u_j \| \geq c C \sqrt{q} n^{1/q}.$$

Indeed, by (1), for all $m \in \{1, \ldots, N\}$, we have

$$\mathbb{E} \| \sum_{j=1}^{N} g_j u_j \| \geq \frac{C}{m^{1/s}} \mathbb{E} \left(\sum_{i=1}^{m} (q_i^*)^2 \right)^{1/2} \geq d C m^{1/q} \sqrt{\ln(1 + \frac{N}{m})},$$

and we choose $m = N e^{-q}$ (recall that $N \geq n/2$).

As a corollary, we get more precise estimates in the particular case of $E = \ell_q^n$.

Corollary 2 For some universal constant $c_i, d_i > 0$, $1 \leq i \leq 3$, for all $n \geq 1$, and all integer $k = 1, \ldots, n$, there exists a k-dimensional subspace F^k of ℓ_q^n with $q \geq 2$, such that

(i) If $k \leq c_1 q n^{2/q}$, then $d(F^k, \ell_2^k) \leq 3$.

(ii) If $c_1 q n^{2/q} \leq k \leq c_2 q e^{-q} n$, then $d(F^k, \ell_2^k) \leq \frac{d_1 \sqrt{k}}{\sqrt{q} n^{1/q}}$.

(iii) If $c_2 q e^{-q} n \leq k \leq c_3 n$, then $d(F^k, \ell_2^k) \leq \frac{d_2 k^{1/2-1/q}}{\ln(1 + n/k)}$.

(iv) If $c_3 n \leq k \leq n$, then $d(F^k, \ell_2^k) \leq d_3 k^{1/2-1/q}$.

Moreover, the spaces F^k can be choosen randomly with high probability in ℓ_q^n.

Proof:

Let (e_1, \ldots, e_n) be the canonical basis of ℓ_q^n; then for all t_1, \ldots, t_n and for all $m = 1, \ldots, n$,

$$\left(\sum_{i=1}^{n} |t_i|^q \right)^{1/q} = \left| \sum_{i=1}^{n} t_i e_i \right|_q \geq \sum_{i=1}^{m} t_i^* e_i \geq \left(\sum_{i=1}^{m} (t_i^*)^q \right)^{1/q},$$

using Hölder’s inequality. Since $q \geq 2$, (e_1, \ldots, e_n) satisfies a $(1, s)$-estimate, with $\frac{1}{s} = \frac{1}{2} - \frac{1}{q}$. It is clear from the preceding remark that

$$\mathbb{E} \| \sum_{j=1}^{n} g_j e_j \|_q \sim c \sqrt{q} n^{1/q}.$$
Then we apply Theorem 1 to get random subspaces in the whole space ℓ_q^n. □

Remarks:

1. As it is proved in [C-P], the result of Corollary 2 is optimal up to absolute constant. We include here a short proof of this optimality:
Let $T : \ell_2^k \to \ell_q^n$ a linear operator such that for all $x \in \ell_2^k$,

$$|x|_2 \leq |Tx|_q \leq d |x|_2.$$

Now we write

$$1 = \int_{S^{k-1}} |x|_2 d\sigma_{k-1}(x)$$

$$\leq \int_{S^{k-1}} |Tx|_q d\sigma_{k-1}(x) = \int_{S^{k-1}} \left(\sum_{i=1}^n |\langle x, T^*(e_i) \rangle|^q \right)^{1/q} d\sigma_{k-1}(x)$$

$$= \frac{1}{d_k} \mathbb{E} \left(\sum_{i=1}^n |\langle G, T^*(e_i) \rangle|^q \right)^{1/q},$$

where G is a gaussian vector of \mathbb{R}^k. Since $\langle G, T^*(e_i) \rangle$ is $\mathcal{N}(0, |T^*(e_i)|_2^2)$ and by Hölder inequality, we get

$$\mathbb{E} \left(\sum_{i=1}^n |\langle G, T^*(e_i) \rangle|^q \right)^{1/q} \leq \left(\sum_{i=1}^n \mathbb{E} |\langle G, T^*(e_i) \rangle|^q \right)^{1/q} \leq n^{1/q} \gamma(q) \sup_{1 \leq i \leq n} |T^*(e_i)|_2,$$

where $\gamma(q)$ is the moment of order q of a gaussian $\mathcal{N}(0,1)$-variable. Moreover $|T^*(e_i)|_2 \leq \|T^*\| |e_i|_{q'} = d$, so that we get a universal constant $c > 0$ such that,

$$\sqrt{k} \leq c d n^{1/q} \sqrt{q}.$$

2. A constructive proof of a single subspace of ℓ_q^n satisfying the desired conclusion is given in [G-J2].

3. In fact by [L], the inequality $d(F_k^k, \ell_2^k) \leq k^{1/2 - 1/q}$ is always true.

3 The case of operator spaces

Let τ be a 1-symmetric norm on \mathbb{R}^n. It is well known that for $m \geq n$, one defines a norm $\| \cdot \|_\tau$ on the mn-dimensional vector space $\mathcal{M}_{m \times n}(\mathbb{R})$ of all $[m \times n]$-matrices with real entries by setting

$$\|M\|_\tau = \tau(s_1(M), \ldots, s_n(M))$$

for all $M \in \mathcal{M}_{m \times n}(\mathbb{R})$.

6
where the \(s_i(M), 1 \leq i \leq n, \) are the eigenvalues of \(\sqrt{M^*M} \). If for some \(q \geq 1 \)

\[
\tau(x) = \tau(x_1, \ldots, x_n) = \left(\sum_{i=1}^{n} |x_i|^q \right)^{\frac{1}{q}} = |x|^q
\]

we get the so called Schatten class \(S_q(m \times n) \) with the norm

\[
\|T\|_q = \left(\sum_{i=1}^{n} |s_i(T)|^q \right)^{\frac{1}{q}}.
\]

Theorem 3 Let \(\tau \) be a 1-symmetric norm on \(\mathbb{R}^n \) and \(\| \cdot \|_\tau \) the norm on \(\mathcal{M}_{m \times n}(\mathbb{R}) \) associated to \(\tau \). Let \(d_\tau \) be the Banach-Mazur distance between \((\mathbb{R}^n, \tau) \) and \(\ell_2^n \). Then for some universal constant \(c > 0 \), and for every integer \(k \), \(1 \leq k \leq nm \), there exists a \(k \)-dimensional subspace \(F_k \) of \((\mathcal{M}_{m \times n}(\mathbb{R}), \| \cdot \|_\tau) \) such that

\[
(i) \text{ If } k \leq \frac{1}{3}(\mathbb{E}\|G\|_\tau)^2, \text{ then } d(F_k, \ell_2^k) \leq 3.
\]

\[
(ii) \text{ If } \frac{1}{3}(\mathbb{E}\|G\|_\tau)^2 \leq k \leq nm, \text{ then } d(F_k, \ell_2^k) \leq 1 + c d_\tau \sqrt{\frac{k}{nm}}.
\]

Proof:

Since \(\tau \) is a 1-symmetric norm, we can assume that \(\frac{1}{d_\tau} |x|_2 \leq \tau(x) \leq |x|_2 \). Then for all \(T \in \mathcal{M}_{m \times n}(\mathbb{R}) \) one has

\[
\frac{1}{d_\tau} \|T\|_2 \leq \|T\|_\tau = \tau(s_1(T), \ldots, s_n(T)) \leq \|T\|_2
\]

where \(\|T\|_2 = (\text{tr}(T^*T))^{1/2} \) is the Hilbert-Schmidt norm. For \(1 \leq p \leq m \) and \(1 \leq q \leq n \), let \(E_{pq} \) be the canonical basis of \(\mathcal{M}_{m \times n}(\mathbb{R}) \) (with entries \((E_{pq})_{ij} = \delta_{ip} \delta_{qj} \)). Let \(G_\omega : \ell_2^k \to (\mathcal{M}_{m \times n}(\mathbb{R}), \| \cdot \|_\tau) \) be the Gaussian operator defined by

\[
G_\omega = \sum_{l=1}^{k} \sum_{1 \leq p \leq m \atop 1 \leq q \leq n} g_{lpq}(\omega) \ e_l \otimes E_{pq},
\]

where \(e_1, \ldots, e_k \) is the canonical basis of \(\ell_2^k \) and the \(g_{lpq}, 1 \leq l \leq k, 1 \leq p \leq m, 1 \leq q \leq n, \) are pairwise independent normalized Gaussian variables. By inequalities (2) and (3), we have

\[
\mathbb{E} \sup_{|x|_2 = 1} \|G_\omega(x)\|_\tau \leq \mathbb{E}\|G\|_\tau + a_k \sup \{ \|T\|_\tau \ ; \ T \in \mathcal{M}_{m \times n}(\mathbb{R}), \|T\|_2 = 1 \}
\]

and

\[
\mathbb{E} \inf_{|x|_2 = 1} \|G_\omega(x)\|_\tau \geq \mathbb{E}\|G\|_\tau - a_k \sup \{ \|T\|_\tau \ ; \ T \in \mathcal{M}_{m \times n}(\mathbb{R}), \|T\|_2 = 1 \}
\]
where G is a matrix with pairwise independent normalized real Gaussian entries in $\mathcal{M}_{m\times n}(\mathbb{R})$.

It is clear that $\sup\{\|T\|_r; \ T \in \mathcal{M}_{m\times n}(\mathbb{R}), \|T\|_2 = 1\} = 1$. We distinguish now three cases.

1. If $\mathbb{E}\|G\|_r \geq 2a_k$, we have

$$\mathbb{E}\sup_{|x|_r = 1}\|G_{\omega}(x)\|_r / \mathbb{E}\inf_{|x|_r = 1}\|G_{\omega}(x)\|_r \leq \frac{1 + a_k}{1 - a_k / \mathbb{E}\|G\|_r} \leq 3.$$

2. If $\mathbb{E}\|G\|_r \leq 2a_k \leq \frac{\sqrt{mn}}{2}$, then by condition (4) and inequality (2) with $G_\omega : \ell^2 \rightarrow (\mathcal{M}_{m\times n}(\mathbb{R}), \|\cdot\|_2)$, we get

$$\mathbb{E}\inf_{|x|_r = 1}\|G_{\omega}(x)\|_r \geq \frac{1}{d_r} \mathbb{E}\inf_{|x|_r = 1}\|G_{\omega}(x)\|_2 \geq \frac{1}{d_r} (\mathbb{E}\|G\|_2 - a_k).$$

It is well known that $\mathbb{E}\|G\|_2 \geq \frac{\sqrt{mn}}{2}$, so that

$$\mathbb{E}\inf_{|x|_r = 1}\|G_{\omega}(x)\|_r \geq \frac{1}{d_r} (\frac{\sqrt{mn}}{2} - a_k).$$

Since $\mathbb{E}\|G\|_r \leq 2a_k \leq n/2$, we deduce that

$$\mathbb{E}\sup_{|x|_r = 1}\|G_{\omega}(x)\|_r / \mathbb{E}\inf_{|x|_r = 1}\|G_{\omega}(x)\|_r \leq \frac{3a_k}{d_r \frac{\sqrt{mn}}{4}} \leq \frac{12d_r \sqrt{k}}{\sqrt{mn}}.$$

3. If $a_k \geq \frac{\sqrt{mn}}{4}$, we know from condition (4) that for all subspaces F^k of $(\mathcal{M}_{m\times n}(\mathbb{R}), \tau)$ with $\dim F^k = k$, one has $d(F^k, \ell^2) \leq d_r$. This concludes the proof of the theorem because $a_k \sim \sqrt{k}$. \hfill \Box

As a consequence of the preceding theorem, we get

Corollary 4 Let $q \geq 2$ and let $S_q(m \times n)$ be the Schatten class. Assume that for some fixed $r > 1$, one has $m = rn$. Then for some universal constant $c > 0$, and for every integer k, $1 \leq k \leq nm$, there exists a k-dimensional subspace F^k of $S_q(m \times n)$ such that

$$d(F^k, \ell^2) \leq 1 + \frac{c}{\sqrt{r}} n^{-1/q} \sqrt{\frac{k}{n}}.$$

8
Proof:
It is well known that for $q \geq \ln(n)$ the norm on $S_q(m \times n)$ is equivalent up

to universal constant to the norm on $S_\infty(m \times n)$; so we reduce to the case

when $2 \leq q \leq \ln(n)$. We have $\tau(x) = \left(\sum_{i=1}^{n} |x_i|^q \right)^{1/q}$ so that $d_\tau = n^{1/\frac{1}{q}-\frac{1}{2}}$. We

need to compute $\mathbb{E} \|G\|_q$ for a Gaussian matrix. It is well known that

$$a_m - a_n \leq \mathbb{E} \min_{1 \leq i \leq n} s_i(G) \leq \mathbb{E} \sup_{1 \leq i \leq n} s_i(G) \leq a_m + a_n,$$

with

$$a_k = \sqrt{2} \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)} \leq \sqrt{k},$$

(see [H-T] for the more general case of gaussian matrices with operator

entries). Then

$$n^{1/q}(a_m - a_n) \leq \mathbb{E} \|G\|_q \leq n^{1/q}(a_m + a_n),$$

and we apply Theorem 3. \hfill \Box

Remark: Using the same idea as for ℓ^q_2, we can prove the optimality of this Corollary.

Let $\Theta: \ell^k_2 \rightarrow S_q(m \times n)$ an operator such that for all $x \in \ell^k_2$,

$$|x|_2 \leq \|\Theta x\|_q \leq d |x|_2.$$

Now we write

$$1 = \int_{S^{k-1}} |x|_2 d\sigma_{k-1}(x) \leq \int_{S^{k-1}} \|\Theta x\|_q d\sigma_{k-1}(x) \leq n^{1/q} \int_{S^{k-1}} \|\Theta x\|_\infty d\sigma_{k-1}(x).$$

If T_i denotes the matrix $\Theta(e_i)$ and $G = (g_1, \ldots, g_k)$ is a gaussian vector in

\mathbb{R}^k, we have

$$1 \leq \frac{n^{1/q}}{a_k} \mathbb{E} \| \sum_{i=1}^{k} g_i T_i \|_\infty.$$

But

$$\| \sum_{i=1}^{k} g_i T_i \|_\infty = \sup_{|x|_2=1, x \in \mathbb{R}^n} \sup_{|y|_2=1, y \in \mathbb{R}^n} \sum_{i=1}^{k} g_i \langle T_i x, y \rangle.$$

Let $h_1, \ldots, h_n, h'_1, \ldots, h'_n$ be nm independent gaussian variables and define

the two gaussian process:

$$X_{x,y} = \sum_{i=1}^{k} g_i \langle T_i x, y \rangle \quad \text{and} \quad Y_{x,y} = \sqrt{2} \sum_{i=1}^{m} h_i x_i + \sum_{i=1}^{n} h'_i y_i.$$

9
By definition of T, one has
\[\| \sum_{i=1}^{k} \alpha_i T_i \|_\infty \leq d \left(\sum_{i=1}^{k} \alpha_i^2 \right)^{1/2}. \]
If we choose $\alpha_i = \langle T_i x, y \rangle$, $1 \leq i \leq k$, we get for all $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$,
\[\left(\sum_{i=1}^{k} |\langle T_i x, y \rangle|^2 \right)^{1/2} \leq d |x|_2 |y|_2. \]
We conclude that for all $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$, $|x|_2 = 1$ and $|y|_2 = 1$,
\[\mathbb{E} |X_{x,y} - X_{x',y'}|^2 = \sum_{i=1}^{k} |(\langle T_i x, y - y' \rangle + \langle x - x', T_i^* y' \rangle)|^2 \]
\[\leq 2 \sum_{i=1}^{k} |\langle T_i x, y - y' \rangle|^2 + |\langle x - x', T_i^* y' \rangle|^2 \]
\[\leq 2d^2 (|y - y'|_2^2 + |x - x'|_2^2) = \mathbb{E}|Y_{x,y} - Y_{x',y'}|^2. \]
Then by Slepian’s lemma, we obtain
\[\mathbb{E} \sup_{|x|_2=1} \sup_{|y|_2=1} X_{x,y} \leq \mathbb{E} \sup_{|x|_2=1} \sup_{|y|_2=1} Y_{x,y} \]
and since $\mathbb{E} \sup_{|x|_2=1} \sup_{|y|_2=1} Y_{x,y} = \sqrt{2} d(a_m + a_n)$, we get a universal constant $c > 0$ such that
\[\sqrt{k} \leq c d (\sqrt{r} + 1) n^{1/2+1/q}. \]
If a subspace of $S_q(m \times n)$ with dimension k is at distance $d \leq \frac{c}{\sqrt{r}} n^{-1/q} \sqrt{\frac{k'}{n}}$ then $k \leq ck'$ and it proves the optimality of corollary 4.

4 Volume ratios with respect to quotients of subspaces of L_q

In this section we introduce volume ratios of random k—dimensional subspaces F of an n—dimensional normed space X with respect to the class of all k—dimensional subspaces of quotients of ℓ_q, $2 \leq q \leq \infty$. This volume ratio yields among other things, in the case $q = 2$, a lower bound for the distance $d(F, \ell_2^k)$ for random subspaces F of X.

Let us consider the following concept of volume ratios introduced in [G-J1, G-J2]. Given a n—dimensional Banach space $X = (\mathbb{R}^n, ||.||)$ with unit ball
B_X, and a finite or infinite dimensional Banach space Z with unit ball B_Z, we define the volume ratios

$$\nu_r (X, Z) := \inf \left\{ \left(\frac{\text{vol}(B_X)}{\text{vol}(T(B_Z))} \right)^{1/n} ; T(B_Z) \subset B_X \right\},$$

$$\nu_r (X, S(Z)) := \inf \left\{ \left(\frac{\text{vol}(B_X)}{\text{vol}(T(B_F))} \right)^{1/n} ; F \subset Z, \dim F = n, T(B_F) \subset B_X \right\},$$

$$\nu_r (X, S_p) := \nu_r (X, S(\ell_p)),$$

and

$$\nu_r (X, SQ(\ell_p)) := \inf_{Q \text{ quotient of } \ell_p} \nu_r (X, S(Q)).$$

As in [G-J2] the n-th volume number of an operator $T : X \to Y$ is defined by

$$v_n(T) = \sup \left\{ \left(\frac{\text{vol}(T(B_F))}{\text{vol}(B_F)} \right)^{1/n} ; E \subset X, T(E) \subset F \subset Y, \dim E = \dim F = n \right\}$$

We shall also need the definition of the p–nuclear norm of an operator $T : X \to Y$ between two finite dimensional Banach spaces, which is defined by

$$\nu_p(T) = \inf \{ \| A_N \| \| \sigma_N \| \| B_N \| ; T = B_N \sigma_N A_N, N \geq 1 \}$$

where $A_N : X \to \ell^N$, $\sigma_N : \ell^N \to \ell^N$ is a diagonal operator, $B_N : \ell^N \to Y$.

Theorem 5 Let $X = (\mathbb{R}^n, \| . \|)$ be a n–dimensional normed space, \{ b_i, b_i^*\}$_{i=1}^n$ be a biorthogonal basis for X and $J = \sum_{j=1}^k e_j^* \otimes b_j : \mathbb{R}^n \to X$. For all $u \in O_n$, define $u_k : \mathbb{R}^k \to \mathbb{R}^n$ by $u_k(e_j) = u(e_j)$ for all $1 \leq j \leq k$ and A_u by $A_u = J \circ u_k : \ell^2_k \to X$.

Then for some universal constant $c > 0$ and for all $2 \leq q \leq \infty$ the k–dimensional random subspace $F_u = A_u(\ell^k_2) \subset X$ satisfies

$$\mathbb{E}_u \nu_r (F_u, SQ(\ell_q)) \geq \frac{c \sqrt{k}}{\left(\sqrt{q} + \sqrt[k]{\sqrt{q}} \right)^{\frac{1}{q}}} \max_{1 \leq i \leq n} \| b_i^* \| \mathbb{E}_u \left\| \sum_{i=1}^n g_i b_i \right\|$$

where \mathbb{E}_u denotes the expectation with respect to the Haar measure on O_n.

11
Proof:
For \(u \in O_n \), we define also \(B_u : X \rightarrow \ell_2^k \) by \(B_u = u_k^* J^{-1} u_k \) where \(u_k^* : \mathbb{R}^n \rightarrow \mathbb{R}^k \) is the adjoint of \(u_k \). Clearly \(B_u A_u = i d_{\ell_2^k} \).

Claim: Let \(q' \) be the conjugate of \(q \), i.e. \(\frac{1}{q} + \frac{1}{q'} = 1 \), then

\[
\mathbb{E}_u \nu_{q'}(B_u : X \rightarrow \ell_2^k) \leq c \sqrt{n} \left(\sqrt{q} + \frac{\sqrt{k}}{n^{1/q}} \right) \max_{1 \leq j \leq n} \| b_j^* \|. \tag{5}
\]

To show this proceed as in the definition of the \(q \)-nuclear ideal norm to factor \(B_u|_{X \rightarrow \ell_2^k} = u_k^* |_{\ell_q^m \rightarrow \ell_2^k} I J^{-1} \) where \(I : \ell_\infty^n \rightarrow \ell_\infty^m = \sum_{i=1}^n e_i \otimes e_i \) is the identity map on \(\mathbb{R}^n \), and \(J^{-1} = \sum_{i=1}^n b_i^* \otimes e_i : X \rightarrow \ell_\infty^n \). Then clearly

\[
\nu_{q'}(B_u|_{X \rightarrow \ell_2^k}) \leq \| J^{-1} \| \| I \| \| u_k^* |_{\ell_q^m \rightarrow \ell_2^k} \| = \max_{1 \leq i \leq n} \| b_i^* \| n^{1/q' - 1/2} \| u_k^* |_{\ell_q^m \rightarrow \ell_2^k} \|.
\]

Let \(G = \sum_{i,j} g_{i,j} e_i \otimes e_j \) denote the Gaussian operator which maps \(\ell_q^m \) to \(\ell_2^k \); we have by [B-G]

\[
\mathbb{E}_u \| u_k^* |_{\ell_q^m \rightarrow \ell_2^k} \| \leq \frac{c_0}{\sqrt{n}} \mathbb{E} \| G : \ell_q^m \rightarrow \ell_2^k \| \leq \frac{c_1}{\sqrt{n}} (c n^{1/q} + \sqrt{k})
\]

hence

\[
\mathbb{E}_u \nu_{q'}(B_u|_{X \rightarrow \ell_2^k}) \leq c_0 n^{1/2} (c \sqrt{q} + n^{-1/4} \sqrt{k}) \max_{1 \leq i \leq n} \| b_i^* \|
\]

and (5) is proved.

Now recall that if \(T : \ell_2^k \rightarrow X \) and \(\text{rad} \ (T) =: \int_0^1 \| \sum_{i=1}^k r_i(t)T(e_i) \|_X \, dt \), then using the Marcus-Pisier inequality [B-G], [M-P]

\[
\sqrt{n} \mathbb{E} \text{rad} \ (A_u : \ell_2^k \rightarrow X) = \sqrt{n} \mathbb{E} u \int_0^1 \| \sum_{j=1}^k r_j(t)A_u(e_j) \| \, dt \\
\leq c \mathbb{E} \int_0^1 \| \sum_{j=1}^k \sum_{i=1}^n r_j(t)g_{i,j}b_i \| \, dt \\
= c \sqrt{k} \mathbb{E} \| \sum_{i=1}^n g_i b_i \|.
\]

Denote by \(e_k(T) \) the \(k \)-th entropy number of an operator \(T : Y \rightarrow X \), then by [C-P] one has

\[
\mathbb{E}_u \sqrt{k} e_k(A_u) \leq 4 \mathbb{E}_u \sqrt{k} e_k(A_u) \leq 4c_1 \mathbb{E}_u \text{rad} \ (A_u) \leq c \sqrt{k} \mathbb{E} \| \sum_{i=1}^n g_i b_i \|.
\]

\[12\]
By [G-J2] Lemma 1.3, we have for any \(k = 1, 2, \ldots, 2 \leq q \leq \infty \), and any operator \(T \) from a Banach space \(Z \) to \(\ell_2 \)

\[
\sqrt{k} v_k(T) \leq c_0 \sup_{F \subseteq Z, \dim(F) = k} \varr(F; SQ(\ell_q)).
\]

Applying this to \(B_u|_{F_k} \rightarrow \ell_2^k \) we have

\[
\sqrt{k} v_k(B_u) \leq c_0 v_q(B_u) \varr(F_u; SQ(\ell_q)).
\]

Since \(B_u A_u = id_{\ell_2^k} \), we have \(1 = v_k(A_u^* A_u) = v_k(A_u) v_k(A_u^*|_{F_k}) \).

Hence we obtain

\[
1 \leq c_0 v_k(A_u) \frac{v_q(B_u)}{\sqrt{k}} \varr(F_u, SQ(\ell_q))
\]

and taking the 3-nd root we get by Hölder inequality

\[
1 \leq c_0 \mathbb{E}_u v_k(A_u) \mathbb{E}_u \left(\frac{v_q(B_u)}{\sqrt{k}} \right) \mathbb{E}_u \varr(F_u, SQ(\ell_q))
\]

\[
\leq \frac{c_0}{\sqrt{n}} \mathbb{E} \left(\sum_{i=1}^n g_i b_i \right) \frac{c_0}{\sqrt{n}} \left(\sqrt{q} + \frac{\sqrt{k}}{n^{1/2}} \right) \max_i \| b_i^* \| \mathbb{E}_u \varr(F_u, SQ(\ell_q)).
\]

This concludes the proof. \(\square \)

Remarks :

1. It was proved in [G-J2] that

\[
\varr(X, SQ(\ell_p)) \leq \varr(X, S(\ell_p)) \leq c_0 \sqrt{p + p'} \varr(X, SQ(\ell_p))
\]

with \(\frac{1}{p} + \frac{1}{p'} = 1 \).

2. Estimates in the case \(q = 2 \) and \(X = \ell_p^n \) or \(X = S_p(m \times n) \) with \(2 \leq p \leq \ln n \) which give optimal lower bound in expectation for random \(k \)-dimensional subspaces of \(X \) (in correlation with part 2 and 3 of this paper). (I have to rewrite that and also for \(q \geq 2 \) as Yoram said us by mail)

References

O. Guédon, *Gaussian version of a theorem of Milman and Schechtman*, Positivity **1** (1997), 1-5.

