VINCENT MILLOT
Vincent Millot
Professeur
LAMA, Laboratoire d'Analyse et de Mathématiques Appliquées
Université Paris-Est Créteil Val de Marne


Email: vincent.millot(at)u-pec.fr
Phone
: +33 (0)1.45.17.16.54
Office: P3 426 
Research Interests
Calculus of Variations, Geometric Measure Theory, Nonlinear PDE's
Publications & Preprints
  • Torus-like solutions for the Landau-de Gennes model. Part III: torus vs split minimizers
         F. Dipasquale, V. Millot, A. Pisante - Preprint 2021.
  • Torus-like solutions for the Landau-de Gennes model. Part II: topology of S^1-equivariant minimizers
         F. Dipasquale, V. Millot, A. Pisante - Preprint 2020.
  • Torus-like solutions for the Landau-de Gennes model. Part I: the Lyutsyukov regime
         F. Dipasquale, V. Millot, A. Pisante - Arch. Rational Mech. Anal. 239 (2021), 599-678.
  • Partial regularity for fractional harmonic maps into spheres
         V. Millot, M. Pegon, A. Schikorra - Arch. Rational Mech. Anal. 242 (2021), 747-825.
  • Minimizing 1/2-harmonic maps into spheres
           V. Millot, M. Pegon - Calc. Var. and Partial Differential Equations 59, 55 (2020), 37p.
  • A Ginzburg-Landau model with topologically induced free discontinuities
           M. Goldman, B. Merlet, V. Millot - Ann. Inst. Fourier 70 (2020), 2583-2675.
  • Minimizing fractional harmonic maps on the real line in the supercritical regime
           V. Millot, Y. Sire, H. Yu - Discrete Cont. Dyn. Syst. A. 38 (2018), 6195-6214.
  • On a phase field approximation of the planar Steiner problem: existence, regularity, and asymptotic of minimizers
         M. Bonnivard, A. Lemenant, V. Millot - Interfaces Free Bound. 20 (2018), 69-106.
  • Asymptotics for a fractional Allen-Cahn equation and stationary nonlocal minimal surfaces
          V. Millot, Y. Sire, K. Wang - Arch. Rational Mech. Anal. 231 (2019), 1129-1216.
  • On sets minimizing their weighted length in uniformly convex separable Banach spaces
          T. De Pauw, A. Lemenant, V. Millot - Adv. Math. 305 (2017), 1268-1319.
  • Isoperimetry and stability properties of balls with respect to nonlocal energies
          A. Figalli, N. Fusco, F. Maggi, V. Millot, M. Morini - Comm. Math. Phys. 336 (2015), 441-507.
  • On a fractional Ginzburg-Landau equation and 1/2-harmonic maps into spheres
          V. Millot, Y. Sire - Arch. Rational Mech. Anal. 215 (2015), 125-210.
  • Unilateral gradient flow of the Ambrosio-Tortorelli functional by minimizing movements
          J.F. Babadjian, V. Millot - Ann. Inst. H. Poincaré Analyse Non Linéaire 31 (2014), 779-822.
  • A two-gradient approach for phase transitions in thin films
          B. Galvao-Sousa, V. Millot - NoDEA 20 (2013), 1631-1682.
  • Material voids in elastic solids with anisotropic surface energies
          I. Fonseca, N. Fusco, G. Leoni, V. Millot - J. Math. Pures Appl. 96 (2011), 591-639.
  • A quantitative isoperimetric inequality for fractional perimeters
          N. Fusco, V. Millot, M. Morini - J. Funct. Anal. 261 (2011), 697-715.
  • Gamma-convergence of 2D Ginzburg-Landau functionals with vortex concentration along curves
          S. Alama, L. Bronsard, V. Millot - J. Anal. Math. 114 (2011), 341-391.
  • Symmetry of local minimizers of the three-dimensional Ginzburg-Landau functional
          V. Millot, A. Pisante - J. Eur. Math. Soc. (JEMS) 12 (2010), 1069-1096.
  • Homogenization of variational problems in manifold valued BV-spaces
          J.F. Babadjian, V. Millot - Calc. Var. and Partial Differential Equations 36 (2009), 7-47.
  • Homogenization of variational problems in manifold valued Sobolev spaces
          J.F. Babadjian, V. Millot - ESAIM Contr., Opt., Calc. Var. 16 (2010), 833-855.
  • The dipole problem for H^1/2(S^2,S^1)-maps and application
          V. Millot - Singularities in PDE and the Calculus of Variations, CRM Proceedings and Lecture Notes 44 (2008), 165-178.
  • Relaxed energies for H^1/2-maps with values into the circle and measurable weights
          V. Millot, A. Pisante - Indiana Univ. Math. J. 58 (2009), 49-136.
  • Energy expansion and vortex location for a two-dimensional rotating Bose-Einstein condensate
          R. Ignat, V. Millot - Rev. Math. Phys. 18 (2006), 119-162.
  • The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate
          R. Ignat, V. Millot - J. Funct. Anal. 233 (2006), 260-306.
  • The relaxed energy for S^2-valued maps and measurable weights
          V. Millot - Ann. Inst. H. Poincaré Analyse Non Linéaire 23 (2006), 135-157.
  • Vortices in a 2d rotating Bose-Einstein condensate
          R. Ignat, V. Millot - C. R. Acad. Sci. Paris Sér. I 340 (2005), 571-576.
  • Energy with weight for S^2-valued maps with prescribed singularities
          V. Millot - Calc. Var. and Partial Differential Equations 24 (2005), 83-109.
  • Coulomb friction and oscillation: stabilization in finite time for a system of damped oscillators
          J.I. Diaz, V. Millot - Actas XVIII CEDYA / VIII CMA (2005).
Habilitation à Diriger les Recherches
Contributions au calcul variationnel géométrique et applications

Notes de Cours
  • Analyse Réelle Master 1 Mathématiques, Université Paris Diderot.
  • Equations Différentielles Licence 3 Mathématiques, Université Paris Diderot.
  • Topologie, Analyse et Calcul Différentiel 1ière année ENS Paris.
Create a free web site with Weebly