Congrès et conférences


[122] E. Chénier, R. Eymard, and R. Herbin.
Results with a Locally Refined MAC-Like Scheme–Benchmark Session.
In C. Cancès and P. Omnès, editors, Finite Volumes for Complex Applications VIII-Methods and Theoretical Aspects, volume 199 of Springer Proceedings in Mathematics & Statistics, pages 125–139. Springer International Publishing, 2017.


[123] J. Droniou and R. Eymard.
Benchmark: Two Hybrid Mimetic Mixed Schemes for the Lid-Driven Cavity.
In C. Cancès and P. Omnès, editors, Finite Volumes for Complex Applications VIII-Methods and Theoretical Aspects, volume 199 of Springer Proceedings in Mathematics & Statistics, pages 107–124. Springer International Publishing, 2017.


[124] J. Droniou and R. Eymard.
The Asymmetric Gradient Discretisation Method.
In C. Cancès and P. Omnès, editors, Finite Volumes for Complex Applications VIII-Methods and Theoretical Aspects, volume 199 of Springer Proceedings in Mathematics & Statistics, pages 311–319. Springer International Publishing, 2017.


[125] R. Eymard and C. Guichard.
DGM, an item of GDM.
In C. Cancès and P. Omnès, editors, Finite Volumes for Complex Applications VIII-Methods and Theoretical Aspects, volume 199 of Springer Proceedings in Mathematics & Statistics, pages 321–329. Springer International Publishing, 2017.


[126] R. Eymard, P. Feron, and C. Guichard.
Gradient Schemes for incompressible steady Navier-Stokes problem.
MAMERN, pages –, 2015.


[127] J. Droniou, R. Eymard, and C. Guichard.
Uniform-in-time convergence of numerical schemes for Richards' and Stefan's models.
FVCA7, pages –, 2014.


[128] R. Eymard.
Micro-Macro Modeling and Simulation of Liquid-Vapor Flows.
9th DFG–CNRS WORKSHOP, 25 février, pages –, 2014.


[129] R. Eymard.
Some convergence results for numerical schemes approximating two phase flow in porous media.
INRIA, 11 février, pages –, 2014.


[130] R. Eymard and P. Feron.
Gradient Schemes for Stokes problem.
FVCA7, pages –, 2014.


[131] R. Eymard, C. Guichard, and R. Masson.
High Performance Computing linear algorithms for two-phase flow in porous media.
FVCA7, pages –, 2014.


[132] R. Eymard, T. Gallouet, C. Guichard, R. Herbin, and R. Masson.
Numerical methods for approximation of flow in porous media.
Rennes, France, 2013.


[133] R. Eymard, T. Gallouet, C. Guichard, R. Herbin, R. Masson, and V. Schlepper.
Study of a numerical scheme for miscible two-phase flow in porous media.
Eindhoven, Netherlands, 2013.


[134] J. Droniou, R. Eymard, T. Gallouet, and R. Herbin.
Gradient schemes for elliptic and parabolic nonlinear problems.
Bonn, Germany, 2012.


[135] R. Eymard, T. Gallouet, C. Guichard, R. Herbin, and R. Masson.
Some mathematical results on models and schemes for one and two-phase flow in porous media.
13th European Conference on the Mathematics of Oil Recovery, Biarritz, France, 2012.


[136] D. L. Rodriguez, P. Sturdza, and R. Eymard.
Improving the accuracy of Euler/boundary-layer solvers with anisotropic diffusion methods.
In Conference Proceeding Series, pages AIAA–2012–0304. AIAA, Digital SKU: TPM.O.1964 - MASM12, 2012.
50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition Conference Proceedings, Nashville, January 2012.


[137] E. Chénier, R. Eymard, and R. Herbin.
An extension of the mac scheme to some unstructured meshes.
In Finite volumes for complex applications VI, volume 1, pages 253–261. Springer, London, 2011.
Finite Volumes for Complex Applications VI (FVCA VI), Prague, Czech Republic, June 2011.


[138] D. A. Di Pietro, R. Eymard, S. Lemaire, and R. Masson.
Hybrid finite volume discretization of linear elasticity models on general meshes.
In Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, volume 4 of Springer Proc. Math., pages 331–339. Springer, Heidelberg, 2011.


[139] R. Eymard, J. Fuhrmann, and A. Linke.
MAC schemes on triangular meshes.
In Finite volumes for complex applications VI, volume 1, pages 399–407. Springer, London, 2011.
Finite Volumes for Complex Applications VI (FVCA VI), Prague, Czech Republic, June 2011.


[140] R. Eymard, T. Gallouët, and R. Herbin.
Benchmark 3d: the sushi scheme.
In Finite volumes for complex applications VI, volume 2, pages 205–211. Springer, London, 2011.
Finite Volumes for Complex Applications VI (FVCA VI), Prague, Czech Republic, June 2011.


[141] R. Eymard, C. Guichard, and R. Herbin.
Benchmark 3d: the vag scheme.
volume 2, pages 213–221.
Proceedings of the conference on Finite Volumes for Complex Analysis, Prague, 2011.


[142] R. Eymard, C. Guichard, R. Herbin, and R. Masson.
Multiphase flow in porous media using the vag scheme.
In Finite volumes for complex applications VI, volume 1, pages 409–417. Springer, London, 2011.
Finite Volumes for Complex Applications VI (FVCA VI), Prague, Czech Republic, June 2011.


[143] R. Eymard, C. Guichard, and R. Masson.
Grid orientation effect and multipoint flux approximation.
In Finite volumes for complex applications VI, volume 2, pages 419–427. Springer, London, 2011.
Finite Volumes for Complex Applications VI (FVCA VI), Prague, Czech Republic, June 2011.


[144] R. Eymard and R. Herbin.
Gradient scheme approximations for diffusion problems.
In Finite volumes for complex applications VI, volume 1, pages 439–447. Springer, London, 2011.
Finite Volumes for Complex Applications VI (FVCA VI), Prague, Czech Republic, June 2011.


[145] R. Eymard, R. Herbin, J.-C. Latché, and B. Piar.
A class of collocated finite volume schemes for incompressible flow problems.
Handlovičová, Angela (ed.) et al., Algoritmy 2009. 18th conference on scientific computing, Vysoké Tatry – Podbsanské, Slovakia, March 15–20, 2009. Proceedings of contributed papers and posters. Bratislava: Slovak University of Technology, Faculty of Civil Engineering, Department of Mathematics and Descriptive Geometry. 31-40 (2009)., 2009.


[146] C. Chainais-Hillairet, J. Droniou, and R. Eymard.
Benchmark on anisotropic problems: use of the mixed finite volume method.
In R. Eymard and J. Hérard, editors, Proceedings of Finite Volumes for Complex Applications V, pages 751–760, London, 2008. Wiley.


[147] E. Chénier, R. Eymard, and R. Herbin.
A collocated finite volume scheme for the incompressible Navier-Stokes equations on general non-matching grids.
In R. Eymard and J. Hérard, editors, Proceedings of Finite Volumes for Complex Applications V, pages 289–296, London, 2008. Wiley.


[148] R. Eymard, T. Gallouët, and R. Herbin.
Benchmark on anisotropic problems: Sushi: a scheme using stabilization and hybrid interfaces for anisotropic heterogeneous diffusion problems.
In R. Eymard and J. Hérard, editors, Proceedings of Finite Volumes for Complex Applications V, pages 801–814, London, 2008. Wiley.


[149] R. Eymard, T. Gallouët, and R. Herbin.
Discretization schemes for linear diffusion operators on general non-conforming meshes.
In R. Eymard and J. Hérard, editors, Proceedings of Finite Volumes for Complex Applications V, pages 375–382, London, 2008. Wiley.


[150] R. Eymard and J. Hérard, editors.
Finite Volumes for Complex Applications V, London, 2008. Wiley.


[151] R. Eymard, S. Mercier, A. Prignet, and M. Roussignol.
A finite volume scheme for sensitivity analysis in dynamic reliability.
In R. Eymard and J. Hérard, editors, Proceedings of Finite Volumes for Complex Applications V, pages 383–390, London, 2008. Wiley.


[152] S. Gholamifard, R. Eymard, and C. Duquennoi.
Modeling thermal behavior of bioreactor landfills before leachate recirculation.
In R. Eymard and J. Hérard, editors, Proceedings of Finite Volumes for Complex Applications V, pages 455–462, London, 2008. Wiley.


[153] R. Eymard.
Méthodes de volumes finis pour les problèmes de diffusion et les équations de Navier-Stokes sur grilles vraiment quelconques.
Paris 6, 2007.


[154] R. Eymard.
Nouveaux schémas VF pour Navier-Stokes sur grilles absolument quelconques.
Clermont-Ferrand & Toulouse, 2007.


[155] R. Eymard.
Numerical schemes for nonlinear diffusion problems on general meshes.
Orsay, 2007.


[156] R. Eymard, J. Berton, E. Tillier, and O. Touazi.
Application des méthodes de volumes finis-gradients.
journées VF06 : anisotropie à Porquerolles, 2006.


[157] O. Touazi, E. Chénier, and R. Eymard.
Numerical study of the colocated clustered finite volume schem.
Fourth International Conference on Computational Fluid Dynamics, Ghent, 2006.


[158] N. Bouillard, R. Eymard, R. Herbin, and Ph. Montarnal.
Diffusion with dissolution and precipitation in a porous media, approximation by a finite volume scheme.
In Proceedings of FVCA4 (Marrakech), F. Benkahldoun Ed. Hermes-Penton, 2005.


[159] E. Chénier, R. Eymard, R. Herbin, J.C. Latché, and O. Touazi.
Stabilisation d'une méthode de volumes finis colocalisés pour l'approximation des équations de Navier-Stokes.
Institut Français du Pétrole, 2005.


[160] C. Cocozza-Thivent, R. Eymard, and S. Mercier.
A finite volume scheme for dynamic reliability studies.
FVCA4, Marrakech, 2005.


[161] R. Eymard.
Dissolution and precipitation in a porous medium, Modeling and simulation.
Systèmes de Réaction-Diffusion en Sciences de la Vie, Orsay, 2005.


[162] R. Eymard and T. Gallouët.
A finite volume scheme for the computation of erosion limiters.
FVCA4, Marrakech, 2005.


[163] R. Eymard, T. Gallouët, and R. Herbin.
Finite volume schemes for nonlinear parabolic problems: another regularization method.
EQUADIFF 11, Bratislava, 2005.


[164] C. Cocozza-Thivent, R. Eymard, and S. Mercier.
Méthodologie et algorithmes pour la quantification de petits systèmes redondants.
Congrès Lambda-Mu 14, Bourges, page 8 pages, 2004.


[165] C. Cocozza-Thivent, R. Eymard, and S. Mercier.
A numerical scheme to solve integro-differential equations in the dynamic reliability field.
PSAM / ESREL' 04 (International Conference on Probabilistic Safety Assesment and Management), Berlin, page 6 pages, 2004.


[166] C. Cocozza-Thivent and R. Eymard.
Marginal distributions of a semi-markov process and their computations.
In Proceedings of the Ninth ISSAT International Conference on Reliability and Quality in Design, 2003.


[167] R. Eymard.
Finite volumes for parabolic, hyperbolic, elliptic and coupled problems 1.
Weierstrass Institute for Applied Analysis and Stochastics, Berlin, 2003.


[168] R. Eymard.
Finite volumes for parabolic, hyperbolic, elliptic and coupled problems 2.
Weierstrass Institute for Applied Analysis and Stochastics, Berlin, 2003.


[169] R. Eymard.
Finite volumes for parabolic, hyperbolic, elliptic and coupled problems 3.
Weierstrass Institute for Applied Analysis and Stochastics, Berlin, 2003.


[170] R. Eymard.
Finite volumes for parabolic, hyperbolic, elliptic and coupled problems 4.
Weierstrass Institute for Applied Analysis and Stochastics, Berlin, 2003.


[171] R. Eymard.
Volumes finis et homogeneisation discrete.
ALGORITMY 2002, 2002.


[172] R. Eymard.
Quelques aspects des méthodes de volumes finis.
Université PARIS 6, 2001.


[173] R. Eymard, T. Gallouët, M. Ghilani, and R. Herbin.
Error estimate for the finite volume approximate of the solution to a nonlinear convective equation.
In Recent advances in problems of flow and transport in porous media (Marrakech, 1996), volume 11 of Theory Appl. Transp. Porous Media, pages 13–24. Kluwer Acad. Publ., Dordrecht, 1998.


[174] R. Eymard, T. Gallouët, D. Hilhorst, and Y. Naıt Slimane.
Convergence of a finite volume scheme for a parabolic degenerate equation.
In Recent advances in problems of flow and transport in porous media (Marrakech, 1996), volume 11 of Theory Appl. Transp. Porous Media, pages 3–11. Kluwer Acad. Publ., Dordrecht, 1998.