robert.eymard[at]univ-eiffel.fr
Laboratoire d'Analyse et de Mathématiques Appliquées
Une introduction à la relativité restreinte, par Georges EYMARD (1921-1998) permet de comprendre la construction de cette théorie à partir des connaissances élémentaires acquises au lycée.
An introduction to special relativity (in French), by Georges EYMARD (1921-1998) proposes a pedagogical construction of the theory from elementary calculations.
The finite volume method:
[1]
R. Eymard, T. Gallouët, and R. Herbin.
The finite volume
method.
Handbook of Numerical Analysis, Ph. Ciarlet J.L. Lions eds,
7:715–1022, 2000.
The gradient discretisation method:
[2]
J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin.
The gradient discretisation method
.
Mathématiques et Applications 82. Springer, 2018.
Publications récentes - recent publications
[3]
W. Arendt, I. Chalendar, and R. Eymard.
Galerkin approximation of linear problems in
Banach and Hilbert
spaces.
accepted in IMA Journal of Numerical Analysis, 2020.
[4]
J. Droniou and R. Eymard.
High-order mass–lumped schemes for nonlinear
degenerate elliptic
equations.
SIAM Journal on Numerical Analysis, 58(1):153–188, 2020.
[5]
J. Droniou, R. Eymard, T. Gallouët, and R. Herbin.
A unified analysis of elliptic problems with
various boundary conditions and their
approximation.
Czechoslovak Mathematical Journal, 70:339–368, 2020.
[6]
J. Droniou, R. Eymard, T. Gallouët, and R. Herbin.
The Gradient Discretisation Method for Linear
Advection Problems.
Computational Methods in Applied Mathematics,
https://doi.org/10.1515/cmam-2019-0060, 20(3):437–458, 2020.
[7]
R. Eymard, C. Guichard, and X. Lhébrard.
Convergence of numerical schemes for a
conservation equation with convection and degenerate
diffusion.
accepted in Journal of Computational Mathematics, 2020.
[8]
J. Droniou, R. Eymard, A. Prignet, and K. S. Talbot.
Unified convergence analysis of numerical schemes
for a miscible displacement problem.
Foundations of Computational Mathematics, 19(2):333–374, Apr
2019.
[9]
S. Phongthanapanich and R. Eymard.
A Comparative Study of Characteristic Finite
Element and Characteristic Finite Volume Methods for
Convection-Diffusion-Reaction Problems on Triangular
Grids.
Applied Science and Engineering Progress, 12(4):1–8, 2019.
[10]
R. Eymard, P. Feron, and C. Guichard.
Family of convergent numerical schemes for the
incompressible Navier-Stokes
equations.
Mathematics and Computers in Simulation, 144:196–218, Feb.
2018.
[11]
R. Eymard and C. Guichard.
Discontinuous Galerkin gradient discretisations
for the approximation of second-order differential operators in divergence
form.
C. Comp. Appl. Math., 37(4):4023–4054, 2018.