robert.eymard[at]univ-eiffel.fr
Laboratoire d'Analyse et de Mathématiques Appliquées
Une introduction à la relativité restreinte, par Georges EYMARD (1921-1998) permet de comprendre la construction de cette théorie à partir des connaissances élémentaires acquises au lycée.
An introduction to special relativity (in French), by Georges EYMARD (1921-1998) proposes a pedagogical construction of the theory from elementary calculations.
The finite volume method:
[1]
R. Eymard, T. Gallouët, and R. Herbin.
The finite volume
method.
Handbook of Numerical Analysis, Ph. Ciarlet J.L. Lions eds,
7:715–1022, 2000.
The gradient discretisation method:
[2]
J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin.
The gradient discretisation method
.
Mathématiques et Applications 82. Springer, 2018.
Publications récentes - recent publications
[3]
W. Arendt, I. Chalendar, and R. Eymard.
Extensions of derivations and symmetric
operators.
Semigroup Forum, 106:339–367, 2023.
[4]
W. Arendt, I. Chalendar, and R. Eymard.
Lions' representation theorem and
applications.
Journal of Mathematical Analysis and Applications,
522(2):126946, 2023.
[5]
W. Arendt, I. Chalendar, and R. Eymard.
Space-time error estimates for approximations of
linear parabolic problems with generalized time boundary
conditions.
pages –, 2023.
[6]
C. Chainais-Hillairet, R. Eymard, and J. Fuhrmann.
A monotone numerical flux for quasilinear
convection diffusion
equation.
Mathematics of Computation, 2023.
[7]
J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin.
Optimal error estimates for non-conforming
approximations of linear parabolic problems with minimal
regularity.
working paper or preprint, Aug. 2023.
[8]
R. Eymard and T. Gallouët.
A new convergence proof for approximations of the
Stefan problem.
Discrete and Continuous Dynamical Systems, 43(3&4):1383–1399,
2023.
[9]
R. Eymard and D. Maltese.
Convergence of the incremental projection method
using conforming
approximations.
accepted in Computational Methods in Applied Mathematics,
pages –, 2023.
[10]
W. Arendt, I. Chalendar, and R. Eymard.
Galerkin approximation of linear problems in
Banach and Hilbert
spaces.
IMA Journal of Numerical Analysis, 42(1):165–198, 2022.
[11]
R. Eymard, T. Gallouët, R. Herbin, and J.-C. Latché.
Finite volume schemes and Lax-Wendroff
consistency.
Comptes Rendus. Mécanique, 2022.
Online first.
[12]
R. Eymard, D. Maltese, and A. Prignet.
Weighted p–Laplace approximation of linear and
quasi–linear elliptic problems with measure
data.
Journal of Differential Equations, 330:208–236, 2022.
[13]
K. Para, B. Jitsom, R. Eymard, S. Sungnul, S. Sirisubtawee, and
S. Phongthanapanich.
An accuracy comparison of piecewise linear
reconstruction techniques for the characteristic finite volume method for
two-dimensional convection-diffusion
equations.
ZAMM - Journal of Applied Mathematics and Mechanics /
Zeitschrift für Angewandte Mathematik und Mechanik, 101(12):e201900245,
Aug. 2021.
[14]
E. Chénier and R. Eymard.
Exact pressure elimination for the
Crouzeix-Raviart scheme applied to the Stokes and Navier-Stokes
problems, 2021.
[15]
J. Droniou, R. Eymard, T. Gallouët, and R. Herbin.
Non-conforming Finite Elements on Polytopal
Meshes, pages 1–35.
Springer International Publishing, Cham, 2021.
[16]
R. Eymard, C. Guichard, and X. Lhébrard.
Convergence of numerical schemes for a
conservation equation with convection and degenerate
diffusion.
Journal of Computational Mathematics, 39:428–452, 2021.
[17]
R. Eymard and D. Maltese.
Convergence of nonlinear numerical approximations
for an elliptic linear problem with irregular
data.
ESAIM: M2AN, 55(6):3043–3089, 2021.
[18]
J. Droniou and R. Eymard.
High-order mass–lumped schemes for nonlinear
degenerate elliptic
equations.
SIAM Journal on Numerical Analysis, 58(1):153–188, 2020.
[19]
J. Droniou, R. Eymard, T. Gallouët, and R. Herbin.
A unified analysis of elliptic problems with
various boundary conditions and their
approximation.
Czechoslovak Mathematical Journal, 70:339–368, 2020.
[20]
J. Droniou, R. Eymard, T. Gallouët, and R. Herbin.
The Gradient Discretisation Method for Linear
Advection Problems.
Computational Methods in Applied Mathematics,
https://doi.org/10.1515/cmam-2019-0060, 20(3):437–458, 2020.