Robert EYMARD


robert.eymard[at]univ-eiffel.fr

Laboratoire d'Analyse et de Mathématiques Appliquées

UFR de mathématiques

Université Gustave Eiffel

Une introduction à la relativité restreinte, par Georges EYMARD (1921-1998) permet de comprendre la construction de cette théorie à partir des connaissances élémentaires acquises au lycée.

An introduction to special relativity (in French), by Georges EYMARD (1921-1998) proposes a pedagogical construction of the theory from elementary calculations.





The finite volume method:


[1] R. Eymard, T. Gallouët, and R. Herbin.
The finite volume method.
Handbook of Numerical Analysis, Ph. Ciarlet J.L. Lions eds, 7:715–1022, 2000.

The gradient discretisation method:


[2] J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin.
The gradient discretisation method .
Mathématiques et Applications 82. Springer, 2018.

Publications récentes - recent publications


[3] W. Arendt, I. Chalendar, and R. Eymard.
Extensions of derivations and symmetric operators.
Semigroup Forum, 106:339–367, 2023.


[4] W. Arendt, I. Chalendar, and R. Eymard.
Lions' representation theorem and applications.
Journal of Mathematical Analysis and Applications, 522(2):126946, 2023.


[5] W. Arendt, I. Chalendar, and R. Eymard.
Space-time error estimates for approximations of linear parabolic problems with generalized time boundary conditions.
pages –, 2023.


[6] C. Chainais-Hillairet, R. Eymard, and J. Fuhrmann.
A monotone numerical flux for quasilinear convection diffusion equation.
Mathematics of Computation, 2023.


[7] J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin.
Optimal error estimates for non-conforming approximations of linear parabolic problems with minimal regularity.
working paper or preprint, Aug. 2023.


[8] R. Eymard and T. Gallouët.
A new convergence proof for approximations of the Stefan problem.
Discrete and Continuous Dynamical Systems, 43(3&4):1383–1399, 2023.


[9] R. Eymard and D. Maltese.
Convergence of the incremental projection method using conforming approximations.
accepted in Computational Methods in Applied Mathematics, pages –, 2023.


[10] W. Arendt, I. Chalendar, and R. Eymard.
Galerkin approximation of linear problems in Banach and Hilbert spaces.
IMA Journal of Numerical Analysis, 42(1):165–198, 2022.


[11] R. Eymard, T. Gallouët, R. Herbin, and J.-C. Latché.
Finite volume schemes and Lax-Wendroff consistency.
Comptes Rendus. Mécanique, 2022.
Online first.


[12] R. Eymard, D. Maltese, and A. Prignet.
Weighted p–Laplace approximation of linear and quasi–linear elliptic problems with measure data.
Journal of Differential Equations, 330:208–236, 2022.


[13] K. Para, B. Jitsom, R. Eymard, S. Sungnul, S. Sirisubtawee, and S. Phongthanapanich.
An accuracy comparison of piecewise linear reconstruction techniques for the characteristic finite volume method for two-dimensional convection-diffusion equations.
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 101(12):e201900245, Aug. 2021.


[14] E. Chénier and R. Eymard.
Exact pressure elimination for the Crouzeix-Raviart scheme applied to the Stokes and Navier-Stokes problems, 2021.


[15] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin.
Non-conforming Finite Elements on Polytopal Meshes, pages 1–35.
Springer International Publishing, Cham, 2021.


[16] R. Eymard, C. Guichard, and X. Lhébrard.
Convergence of numerical schemes for a conservation equation with convection and degenerate diffusion.
Journal of Computational Mathematics, 39:428–452, 2021.


[17] R. Eymard and D. Maltese.
Convergence of nonlinear numerical approximations for an elliptic linear problem with irregular data.
ESAIM: M2AN, 55(6):3043–3089, 2021.


[18] J. Droniou and R. Eymard.
High-order mass–lumped schemes for nonlinear degenerate elliptic equations.
SIAM Journal on Numerical Analysis, 58(1):153–188, 2020.


[19] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin.
A unified analysis of elliptic problems with various boundary conditions and their approximation.
Czechoslovak Mathematical Journal, 70:339–368, 2020.


[20] J. Droniou, R. Eymard, T. Gallouët, and R. Herbin.
The Gradient Discretisation Method for Linear Advection Problems.
Computational Methods in Applied Mathematics, https://doi.org/10.1515/cmam-2019-0060, 20(3):437–458, 2020.