On the Rate of Convergence in the Quantum Central Limit Theorem

M. Cramer
Ulm University

on work with

F.G.S.L. Brandão
Microsoft Research and University College London

M. Guta
University of Nottingham
The Rate of Convergence in the Central Limit Theorem

\[X = \sum_{i=1}^{N} X_i \]

\(X_i\) : “weakly correlated”

Central Limit Theorem:

\[
\mathbb{P}[X \leq x] = F(x) \xrightarrow{N \to \infty} G(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{x} dy \ e^{-\frac{(y-\mu)^2}{2\sigma^2}}
\]

\[\mu = \langle X \rangle, \quad \sigma^2 = \langle (X - \mu)^2 \rangle \]
The Rate of Convergence in the Central Limit Theorem

\[X = \sum_{i=1}^{N} X_i \]

\(X_i \): “weakly correlated”

Central Limit Theorem:

\[\mathbb{P}[X \leq x] = F(x) \xrightarrow{N \to \infty} G(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \int_{-\infty}^{x} dy \, e^{-\frac{(y-\mu)^2}{2\sigma^2}} \]

Berry—Esseen:

\[\sup_{x} \left| F(x) - G(x) \right| \leq \frac{C}{\sqrt{N}} \]

\(\mu = \langle X \rangle, \quad \sigma^2 = \langle (X - \mu)^2 \rangle \)
\[\hat{X} = \sum_{i \in \Lambda} \hat{X}_i = \sum_{k} x_k |k\rangle \langle k| \quad \text{local} \]

\[\hat{q} : \frac{|\langle \hat{A}\hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle|}{\|\hat{A}\|\|\hat{B}\|} \leq N^z e^{-L/\xi} \]

Quantum Central Limit Theorem:

\[\sum_{x_k \leq x} \langle k | \hat{q} | k \rangle = F(x) \xrightarrow{N \to \infty} G(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \int_{-\infty}^{x} dy \ e^{-\frac{(y-\mu)^2}{2\sigma^2}} \]

Goderis, Vets (1989); Hartmann, Mahler, Hess (2004)

Berry—Esseen:

\[\sup_x |F(x) - G(x)| \leq C \frac{\log^{2d}(N)}{\sqrt{N}} \]

\[\mu = \langle \hat{X} \rangle, \quad \sigma^2 = \langle (\hat{X} - \mu)^2 \rangle \]
The Rate of Convergence in the Quantum Central Limit Theorem

\[\hat{X} = \sum_{i \in \Lambda} \hat{X}_i = \sum_{k} x_k |k\rangle \langle k| \quad \text{local} \]

\[\hat{\mathcal{Q}} : \frac{|\langle \hat{A}\hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle|}{\| \hat{A} \| \| \hat{B} \|} \leq N^2 e^{-L/\xi} \]

Quantum Central Limit Theorem:

\[\sum_{x_k \leq x} \langle k| \hat{\mathcal{Q}} |k\rangle = F(x) \]

Berry—Esseen:

\[\sup_x |F(x) - G(x)| \leq \frac{C}{\sqrt{N}} \]

\[\mu = \langle \hat{X} \rangle, \quad \sigma^2 = \langle (\hat{X} - \mu)^2 \rangle \]

relation to density of states: \(\hat{\mathcal{Q}} \propto 1 \)

\[\left| \left\{ k : E - \Delta E < E_k \leq E \right\} \right| \]

\[\propto F(E) - F(E - \Delta E) \]

main ingredient (also for (quantum) central limit):

\[
\sup_x |F(x) - G(x)| \leq \frac{1}{T} + \int_0^T dt \frac{\phi(t) - e^{-t^2/2}}{|t|}
\]

Esseen (1945)
main ingredient (also for (quantum) central limit):

\[
\sup_x |F(x) - G(x)| \leq \frac{1}{T} + \int_0^T dt \frac{|\phi(t) - e^{-t^2/2}|}{|t|}
\]

Esseen (1945)

need to bound \(|\phi(t) - e^{-t^2/2}| \)

\(\phi(t) = \langle e^{i\hat{X}t} \rangle \): characteristic function
main ingredient (also for (quantum) central limit):

\[
\sup_x |F(x) - G(x)| \leq \frac{1}{T} + \int_0^T dt \frac{\left| \phi(t) - e^{-t^2/2} \right|}{|t|}
\]

Esseen (1945)

need to bound \(|\phi(t) - e^{-t^2/2}| \)

\(\phi(t) = \langle e^{i\hat{X}t} \rangle \): characteristic function

\(\hat{X} = \hat{H} \):

- pure state: Loschmidt echo, return probability
- \(\hat{e} = \frac{1}{2^N} \): Fourier transform of d.o.s
The Rate of Convergence in the Quantum Central Limit Theorem: Proof Idea

main ingredient (also for (quantum) central limit):

$$\sup_{x} |F(x) - G(x)| \leq \frac{1}{T} + \int_{0}^{T} dt \frac{|\phi(t) - e^{-t^2/2}|}{|t|}$$

Esseen (1945)

need to bound $|\phi(t) - e^{-t^2/2}|$

$\phi(t) = \langle e^{i\hat{X}t} \rangle$: characteristic function

$\hat{X} = \hat{H}$:
- pure state: Loschmidt echo
- return probability
- dynamical “phase transitions"

$\hat{\rho} = \frac{1}{2^N}$: Fourier transform of d.o.s
The Rate of Convergence in the Quantum Central Limit Theorem: Proof Idea

need to bound \[|\phi(t) - e^{-t^2/2}| \]

set up differential equation for char. function and bound its derivative

\[
\langle \hat{X} e^{it\hat{X}} \rangle = \left(i\langle \hat{X}, \mathcal{X} \rangle t + g(t) \right) \varphi(t) + h(t),
\]

where \(g(t) = g_1(t) + g_2(t) + g_3(t) \), \(h(t) = h_1(t) + h_2(t) + h_3(t) \),

\[
g_1(t) = -i(\langle \hat{X}, \hat{z}_1 \rangle - \langle \hat{X}, \langle \hat{z}_1 \rangle \rangle)t,
\]

\[
g_2(t) = \langle \hat{X}, \hat{\xi}_1(t) \rangle + i\langle \hat{X}, \hat{z}_1 \rangle t - i\langle \hat{X}, \mathcal{X} \rangle t,
\]

\[
g_3(t) = \langle \hat{X}, \hat{\xi}_1(t) \rangle \langle \hat{n}_2(t) \rangle + \sum_{n=3}^k \langle \hat{X}, \hat{\xi}_{n-1}(t) \rangle \langle \hat{n}(t) + 1 \rangle,
\]

\[
h_1(t) = \sum_{n=1}^k \left(\langle \hat{X}, \hat{\xi}_{n-1}(t) e^{iz_n t} \rangle - \langle \hat{X}, \hat{\xi}_{n-1}(t) \rangle \langle e^{iz_n t} \rangle \right),
\]

\[
h_2(t) = \sum_{n=2}^k \langle \hat{X}, \hat{\xi}_{n-1}(t) \rangle \langle (\hat{n}(t) - \langle \hat{n}(t) \rangle) e^{i\hat{X} t} \rangle,
\]

\[
h_3(t) = \langle \hat{X}, \hat{\xi}_k(t) e^{iz_k t} \rangle + \sum_{n=0}^{k-1} \langle \hat{X}, \hat{\xi}_n(t) \hat{r}(t) e^{iz_{n+1} t} \rangle + \sum_{n=2}^k \langle \hat{X}, \hat{\xi}_{n-1}(t) \rangle \langle \hat{s}(t) \rangle,
\]

\[
\hat{r}(t) = e^{i(\hat{z}_n - \hat{z}_{n+1}) t} \left(e^{-i(\hat{z}_n - \hat{z}_{n+1}) t} e^{i\hat{z}_n t} e^{-i\hat{z}_{n+1} t} - \hat{R}_{n+1}(t) \right) = e^{i(\hat{z}_n - \hat{z}_{n+1})} \left(\hat{Z}_{R,n+1}(t) - \hat{R}_{n+1}(t) \right)
\]

\[
\hat{s}(t) = e^{-i(\hat{X} + \hat{Z}_n) t} e^{-i\hat{X} t} e^{i\hat{Z}_n t} - \hat{S}_n(t) \rangle e^{-i\hat{Z}_n t} e^{i\hat{X} t} =: \left(\hat{Z}_{S,n}(t) - \hat{S}_n(t) \right) e^{-i\hat{Z}_n t} e^{i\hat{X} t}.
\]

The Rate of Convergence in the Quantum Central Limit Theorem: Application

\[
\hat{H} = \sum_{i \in \Lambda} \hat{H}_i = \sum_{k} E_k |k\rangle \langle k| \text{ local}
\]

\[
\hat{\mathcal{Q}}_T : \frac{|\langle \hat{A}\hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle|}{\| \hat{A} \| \| \hat{B} \|} \leq N^z e^{-L/\xi}
\]

d = 1 : Araki (1969)
d > 1, \ T > T_c : Kliesch, Gogolin, Kastoryano, Riera, Eisert (2014)

canonical state \(\hat{\mathcal{Q}}_T = e^{-\hat{H}/T}/Z \)
\[\hat{H} = \sum_{i \in \Lambda} \hat{H}_i = \sum_k E_k |k\rangle \langle k| \text{ local} \]

\[\hat{\rho}_T : \frac{|\langle \hat{A}\hat{B}\rangle - \langle \hat{A}\rangle \langle \hat{B}\rangle|}{||\hat{A}|| ||\hat{B}||} \leq N^z e^{-L/\xi} \]

canonical state \(\hat{\rho}_T = e^{-\hat{H}/T}/Z \)

with energy density \(u(T) = \frac{\text{tr}[\hat{H}\hat{\rho}_T]}{N} \) \((= \frac{\mu}{N}) \)

specific heat capacity \(c(T) = \frac{\partial}{\partial T} u(T) \) \((= \frac{\sigma^2}{N T^2}) \)
The Rate of Convergence in the Quantum Central Limit Theorem: Application

$$\hat{H} = \sum_{i \in \Lambda} \hat{H}_i = \sum_k E_k \ket{k}\bra{k} \text{ local}$$

$$\hat{Q}_T: \frac{|\langle \hat{A}\hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle|}{\|\hat{A}\| \|\hat{B}\|} \leq N^z e^{-L/\xi}$$

$d = 1$: Araki (1969)

$d > 1$, $T > T_c$: Kliesch, Gogolin, Kastoryano, Riera, Eisert (2014)

canonical state $\hat{\varrho}_T = e^{-\hat{H}/T}/Z$

$\hat{\varrho}$: state on microcanonical subspace

$$M_\delta = \{ \ket{k} : |E_k - Nu(T)| \leq \delta \sqrt{N} \}, \quad \frac{\log^{2d}(N)}{\sqrt{N}} \lesssim \delta \lesssim 1$$

quantum Berry–Esseen

$$S(\hat{\varrho} \| \hat{\varrho}_T) \lesssim \log(|M_\delta|) - S(\hat{\varrho}) + \log^{2d}(N)$$
Why Do Systems Thermalize?

\[\hat{\rho}_T = e^{-\hat{H}/T}/Z \]
Why Do Systems Thermalize?

lack of knowledge, ignorance

Jaynes’ principle

\[\hat{\varrho}_T = e^{-\hat{H}/T}/Z \]
part of a large (closed) system $\hat{\mathcal{O}}_C = \text{tr}_C [\hat{\mathcal{O}}]$
part of a large (closed) system $\hat{\rho}_C = \text{tr}_C[\hat{\rho}]$

$\approx e^{-\hat{H}_C/T}/Z$
part of a large (closed) system \(\hat{\mathcal{O}}_C = \text{tr}_C[\hat{\mathcal{O}}] \)
\[\approx \text{tr}_C[\text{e}^{-\hat{H}/T}/Z] \]
part of a large (closed) system \(\hat{\rho}_C \approx \text{tr}_C [e^{-\hat{H}/T}/Z] \)

- in contact with heat bath

\[\hat{\rho}_C (0) \otimes \hat{\rho}_B \]
part of a large (closed) system \(\hat{\mathcal{C}} \approx \text{tr}_C \left[e^{-\hat{H} / T} / Z \right] \)

in contact with heat bath, unitary evolution

\[
e^{-it\hat{H}} (\hat{\mathcal{C}}(0) \otimes \hat{\mathcal{B}}) e^{it\hat{H}}
\]
part of a large (closed) system \(\hat{\mathcal{C}} \approx \text{tr}_C \left[e^{-\hat{H}/T} / Z \right] \)

in contact with heat bath, unitary evolution

\[
\text{tr}_C \left[e^{-it\hat{H}} (\hat{\mathcal{C}}(0) \otimes \hat{\mathcal{B}}) e^{it\hat{H}} \right] = \hat{\mathcal{C}}(t)
\]
part of a large (closed) system \(\hat{\mathcal{C}} \approx \text{tr}_{\mathcal{C}} \left[e^{-\hat{H}/T} / Z \right] \)

in contact with heat bath, unitary evolution

\[
\text{tr}_{\mathcal{C}} \left[e^{-it\hat{H}} (\hat{\mathcal{C}}(0) \otimes \hat{\mathcal{B}}) e^{it\hat{H}} \right] = \hat{\mathcal{C}}(t) \\
\xrightarrow{t \to \infty} \text{tr}_{\mathcal{C}} \left[e^{-\hat{H}/T} / Z \right]
\]
part of a large (closed) system $\hat{\mathcal{C}} \approx \text{tr}_\mathcal{C}[e^{-\hat{H}/T}/Z]$

quantum quench

$$\text{tr}_\mathcal{C}[e^{-it\hat{H}}(\hat{\mathcal{C}}(0) \otimes \hat{\mathcal{B}})e^{it\hat{H}}] = \hat{\mathcal{C}}(t)$$

$$\xrightarrow{t \to \infty} \text{tr}_\mathcal{C}[e^{-\hat{H}/T}/Z]$$
part of a large (closed) system $\hat{\mathcal{C}} \approx \text{tr}_\mathcal{C} \left[e^{-\hat{H}/T}/Z \right]$

- **Canonical Typicality**

- **Entanglement and the foundations of statistical mechanics**

- **Thermalization in Nature and on a Quantum Computer**

- **Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems**

- **Equivalence of Statistical Mechanical Ensembles for Non-Critical Quantum Systems**
 Brandão, Cramer, arxiv:1502.03263

quantum quench $\hat{\mathcal{C}}(t) \xrightarrow{t \to \infty} \text{tr}_\mathcal{C} \left[e^{-\hat{H}/T}/Z \right]$

- **Time-dependence of correlation functions following a quantum quench**

- **Relaxation in a Completely Integrable Many-Body Quantum System**

- **Effect of suddenly turning on interactions in the Luttinger model**

- **Quenching, Relaxation, and a Central Limit Theorem for Quantum Lattice Systems**

- **Thermalization and its mechanism for generic isolated quantum systems**

- **Foundation of Statistical Mechanics under Experimentally Realistic Conditions**

- **Quantum mechanical evolution towards thermal equilibrium**
part of a large (closed) system \(\hat{\mathcal{C}} \approx \text{tr}_\mathcal{C} \left[e^{-\hat{H}/T}/Z \right] \)

- **Canonical Typicality**

- **Entanglement and the foundations of statistical mechanics**

- **Thermalization in Nature and on a Quantum Computer**

- **Thermalization and Canonical Typicality in Translation-Invariant Quantum Lattice Systems**

- **Equivalence of Statistical Mechanical Ensembles for Non-Critical Quantum Systems**
 Brandão, Cramer, arxiv:1502.03263

Quantum quench \(\hat{\mathcal{C}}(t) \xrightarrow{t \to \infty} \text{tr}_\mathcal{C} \left[e^{-\hat{H}/T}/Z \right] \)

- **Time-dependence of correlation functions following a quantum quench**

- **Relaxation in a Completely Integrable Many-Body Quantum System**

- **Effect of suddenly turning on interactions in the Luttinger model**

- **Quenching, Relaxation, and a Central Limit Theorem for Quantum Lattice Systems**

- **Thermalization and its mechanism for generic isolated quantum systems**

- **Foundation of Statistical Mechanics under Experimentally Realistic Conditions**

- **Quantum mechanical evolution towards thermal equilibrium**
part of a large (closed) system \(\hat{\mathcal{C}} \approx \text{tr}_C \left[e^{-\hat{H}/T} / Z \right] \)

- **Canonical Typicality**
 Goldstein, Lebowitz, Tumulka, Zahn

- **Entanglement and the foundation**

- **Thermalization in Nature and…**

- **Thermalization and Canonical**
 Mueller, Adlam, Masanes, Wiebe,

- **Equivalence of Statistical Mech…**

for random \(|\psi\rangle \in \mathcal{H}_R \subset \mathcal{H}_C \otimes \mathcal{H}_B \)
with high probability \(\hat{\mathcal{C}} \approx \text{tr}_C \left[\mathbb{1}_R / d_R \right] \)
...thermal?

quantum quench \(\hat{\mathcal{C}}(t) \xrightarrow{t \to \infty} \text{tr}_C \left[e^{-\hat{H}/T} / Z \right] \)

- **Time-dependence of correlation functions following a quantum quench**

- **Relaxation in a Completely Integrable Many-Body Quantum System**

- **Effect of suddenly turning on interactions in the Luttinger model**

- **Quenching, Relaxation, and a Central Limit Theorem for Quantum Lattice Systems**

- **Thermalization and its mechanism for generic isolated quantum systems**

- **Foundation of Statistical Mechanics under Experimentally Realistic Conditions**

- **Quantum mechanical evolution towards thermal equilibrium**
part of a large (closed) system $\hat{\rho}_C \approx \text{tr}_C \left[e^{-\hat{H}/T}/Z \right]$ for random $|\psi\rangle \in \mathcal{H}_R \subset \mathcal{H}_C \otimes \mathcal{H}_B$ with high probability $\hat{\rho}_C \approx \text{tr}_C \left[\mathbb{1}_R/d_R \right]$...thermal?

quantum quench $\hat{\rho}_C(t) \xrightarrow{t \to \infty} \text{tr}_C \left[e^{-\hat{H}/T}/Z \right]$ for random $|\psi\rangle \in \mathcal{H}_R \subset \mathcal{H}_C \otimes \mathcal{H}_B$ with high probability $\hat{\rho}_C \approx \text{tr}_C \left[\mathbb{1}_R/d_R \right]$...thermal?

Integrable

no thermalization instead: generalized Gibbs ensemble

“equilibrium state”, close to it for most times ...thermal? time scale?

Non-integrable
\[\hat{H} = \sum_{ij} \left(\hat{b}_i^\dagger A_{ij} \hat{b}_j + \hat{b}_i B_{ij} \hat{b}_j + \text{h.c.} \right) \text{ local, t.i.} \]

\[\hat{\rho}(0) \in \mathcal{H}_C \otimes \mathcal{H}_B \text{ sufficiently clustering} \]

(not necessarily Gaussian)

A Quantum Central Limit Theorem for Non-Equilibrium Systems:
Exact Local Relaxation of Correlated States
\(\hat{H} = \sum_{ij} (\hat{b}_i^\dagger A_{ij} \hat{b}_j + \hat{b}_i B_{ij} \hat{b}_j + \text{h.c.}) \) local, t.i.

\(\hat{\varrho}(0) \in \mathcal{H}_C \otimes \mathcal{H}_B \) sufficiently clustering (not necessarily Gaussian)

\[
\| \hat{\varrho}_C(t) - \hat{G}(t) \|_{\text{tr}} \leq \epsilon \quad \text{for all} \quad t \in [t_1(\epsilon, N), t_2(\epsilon, N)]
\]

\(\hat{G}(t) \): Gaussian with same second moments as \(\hat{\varrho}_C(t) \)

A Quantum Central Limit Theorem for Non-Equilibrium Systems: Exact Local Relaxation of Correlated States

\[\hat{H} = \sum_{ij} \left(\hat{b}_i^\dagger A_{ij} \hat{b}_j + \hat{b}_i B_{ij} \hat{b}_j + \text{h.c.} \right) \text{ local, t.i.} \]

\[\hat{\rho}(0) \in \mathcal{H}_C \otimes \mathcal{H}_B \text{ sufficiently clustering} \]

\[\text{(not necessarily Gaussian)} \]

\[\| \hat{\rho}_C(t) - \hat{G}(t) \|_{\text{tr}} \leq \epsilon \text{ for all } t \in [t_1(\epsilon, N), t_2(\epsilon, N)] \]

\(\hat{G}(t) \): Gaussian with same second moments as \(\hat{\rho}_C(t) \)

maximum entropy state

equilibration, non-thermal: Tegmark, Yeh (1994)
characteristic function
(FT of Wigner function, Bochner’s theorem)

$$\chi_{\hat{\phi}_C(t)}(\bm{\beta}) = \text{tr}_C[\hat{\phi}_C(t) \hat{D}(\bm{\beta})]$$

$$\hat{D}(\bm{\beta}) = \prod_{i \in C} e^{\beta_i \hat{b}_i^\dagger - \beta_i^* \hat{b}_i}$$
characteristic function
(FT of Wigner function, Bochner’s theorem)

\[\chi_{\hat{\rho}_C(t)}(\beta) = \text{tr}_C [\hat{\rho}_C(t) \hat{D}(\beta)] = \text{tr} [\hat{\rho}(0) \hat{D}(\alpha(t, \beta))] \]

\[\hat{D}(\beta) = \prod_{i \in C} e^{\beta_i \hat{b}_i^\dagger - \beta_i^* \hat{b}_i} \]

\[\alpha_i = \sum_{j \in C} \beta_j (e^{itA})_{ij} \]
for which states $\hat{\varrho}$, $\hat{\tau}$ (and which I) is

$$\|\hat{\varrho}_C - \hat{\tau}_C\|_{tr} \leq \epsilon$$

Local Closeness – A Lemma

Equivalence of Statistical Mechanical Ensembles for Non-Critical Quantum Systems
Brandão, Cramer, arxiv:1502.03263
for which states $\hat{\rho}$, $\hat{\tau}$ (and which l) is

$$\|\hat{\rho}_C - \hat{\tau}_C\|_{\text{tr}} \leq \epsilon$$

non-t.i.: $\mathbb{E}[]$
\[
\hat{T} : \frac{|\langle \hat{A}\hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle|}{\|\hat{A}\| \|\hat{B}\|} \leq N^{\gamma} e^{-L/\xi}
\]

for which states \(\hat{\varrho} \) (and which \(l \)) is

\[
\| \hat{\varrho}_C - \hat{T}_C \|_{\text{tr}} \leq \epsilon
\]
\(\hat{\tau} : \frac{|\langle \hat{A}\hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle |}{\| \hat{A} \| \| \hat{B} \|} \leq N^z e^{-L/\xi} \)

for which states \(\hat{\rho} \)
(and which \(I \) is

\[\| \hat{\rho}_C - \hat{\tau}_C \|_{tr} \leq \epsilon \]

for those with

\[\frac{S(\hat{\rho} \| \hat{\tau})}{\epsilon^2} + l^d \leq \frac{(\epsilon^2 N)^{\frac{1}{d+1}}}{\ln(N)} \]
Equivalence of Statistical Mechanical Ensembles for Non-Critical Quantum Systems

Brandão, Cramer, arxiv:1502.03263

\[\hat{\tau} : \frac{|\langle \hat{A}\hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle|}{\|\hat{A}\|\|\hat{B}\|} \leq N^2 e^{-L/\xi} \]

for which states \(\hat{\varrho} \)
(and which \(I \)) is

\[\|\hat{\varrho}_C - \hat{\tau}_C\|_{tr} \leq \epsilon \]

for those with

\[\frac{S(\hat{\varrho}||\hat{\tau})}{\epsilon^2} + I^d \leq \frac{1}{\ln(N)} \left(\frac{\epsilon^2 N}{d+1} \right) \]

- **Quantum Substate Theorem** Jain, Radhakrishnan, Sen (2009); Jain, Nayak (2011)

\[S^{2\sqrt{\epsilon}}(\hat{\varrho}||\hat{\tau}) \leq S^{2\sqrt{\epsilon}}_{\max}(\hat{\varrho}||\hat{\tau}) \leq \frac{S(\hat{\varrho}||\hat{\tau})+1}{\epsilon} + \log(\frac{1}{1-\epsilon}) \]
\[\hat{\tau} : \frac{|\langle \hat{A}\hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle|}{\| \hat{A} \| \| \hat{B} \|} \leq N^2 e^{-L/\xi} \]

for which states \(\hat{\varrho} \) (and which \(l \) is

\[\| \hat{\varrho}_C - \hat{\tau}_C \|_{tr} \leq \epsilon \]

for those with

\[\frac{S(\hat{\varrho} \| \hat{\tau})}{\epsilon^2} + l^d \leq \frac{(\epsilon^2 N)^{\frac{1}{d+1}}}{\ln(N)} \]

- Quantum Substate Theorem Jain, Radhakrishnan, Sen (2009); Jain, Nayak (2011)
- Lemma Datta, Renner (2009); Brandão, Plenio (2010); Brandão, Horodecki (2012)

\[S_{\text{max}}(\hat{\varrho} \| \hat{\tau}) \leq \lambda \]

\[\kappa = 2^\lambda \| \hat{\tau} - \hat{\pi} \|_{tr} \quad \rightarrow \quad S_{\text{max}}^{\sqrt{8\kappa}}(\hat{\varrho} \| \hat{\tau}) \leq \lambda + \log(\frac{1}{1-\kappa}) \]
\(\hat{\tau} : \frac{|\langle \hat{A}\hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle|}{\| \hat{A} \| \| \hat{B} \|} \leq N^z e^{-L/\xi} \)

for which states \(\hat{\rho} \)

(and which \(l \) is

\[\| \hat{\rho}_C - \hat{\tau}_C \|_{tr} \leq \epsilon \ ? \]

for those with

\[\frac{S(\hat{\rho} \| \hat{\tau})}{\epsilon^2} + ld \lesssim \left(\frac{\epsilon^2 N}{\ln(N)} \right)^{d+1} \]

- **Quantum Substate Theorem** Jain, Radhakrishnan, Sen (2009); Jain, Nayak (2011)
- **Lemma** Datta, Renner (2009); Brandão, Plenio (2010); Brandão, Horodecki (2012)

\[\| \hat{\tau}_{C_1 \ldots C_M} - \hat{\tau}_{C_1} \otimes \cdots \otimes \hat{\tau}_{C_1} \| \leq \sum_{j=2}^{M} \text{cov}(\hat{A}_1 \cdots \hat{A}_{j-1}, \hat{A}_j) \]
\[\hat{\tau} : \frac{|\langle \hat{A}\hat{B} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle|}{\| \hat{A} \| \| \hat{B} \|} \leq N^z e^{-L/\xi} \]

for which states \(\hat{\rho} \)
(and which \(l \)) is

\[\| \hat{\rho}^C - \hat{\tau}^C \|_{tr} \leq \epsilon \]

for those with

\[\frac{S(\hat{\rho} \| \hat{\tau})}{\epsilon^2} + l^d \leq \frac{(\epsilon^2 N)^{\frac{1}{d+1}}}{\ln(N)} \]

- Quantum Substate Theorem
 Jain, Radhakrishnan, Sen (2009); Jain, Nayak (2011)
- Lemma
 Datta, Renner (2009); Brandão, Plenio (2010); Brandão, Horodecki (2012)
- Pinsker’s inequality
 \[\| \hat{\rho} - \hat{\tau} \|_{tr} \leq \ln(4) S(\hat{\rho} \| \hat{\tau}) \]
- Super-additivity
 \[\sum_{j=1}^{M} S(\hat{\rho}_{C_j} \| \hat{\tau}_{C_j}) \leq S(\hat{\rho} \| \hat{\tau}_{C_1} \otimes \cdots \otimes \hat{\tau}_{C_M}) \]

Equivalence of Statistical Mechanical Ensembles for Non-Critical Quantum Systems
Brandão, Cramer, arxiv:1502.03263
canonical state $\hat{\tau} = e^{-\hat{H}/T}/Z$ for which states $\hat{\varrho}$ (and which I) is $\| \hat{\varrho}_C - \hat{\tau}_C \|_{\text{tr}} \leq \varepsilon$?
canonical state \(\hat{\tau} = e^{-\hat{H}/T}/Z \)
for which states \(\hat{\rho} \) (and which \(I \)) is
\[\| \hat{\rho}_C - \hat{\tau}_C \|_{tr} \leq \epsilon \] ?
which states \(\hat{\rho} \) are locally thermal?
Local Equivalence of Micro- and Macrocanonical Ensembles

canonical state $\hat{\tau} = e^{-\hat{H}/T}/Z$ for which states $\hat{\varrho}$ (and which I) is

$$\|\hat{\varrho}_C - \hat{\tau}_C\|_{\text{tr}} \leq \epsilon$$

which states $\hat{\varrho}$ are locally thermal?
for microcanonical states $\hat{\varrho} = \frac{1_{M_\delta}}{|M_\delta|}$
this question goes back to Boltzmann and Gibbs

previous work:

- Thermodynamical functions
 [Lebowitz, Lieb (1969); Lima (1971/72); Touchette (2009)]
- States [Mueller, Adlam, Masanes, Wiebe (2013)]
- Popescu, Short, Winter (2005); Riera, Gogolin, Eisert (2011)
canonical state $\hat{\tau} = e^{-\hat{H}/T}/Z$
for which states $\hat{\rho}$ (and which I) is

$$\| \hat{\rho}_C - \hat{\tau}_C \|_{tr} \leq \epsilon$$

which states $\hat{\rho}$ are locally thermal?

for microcanonical states $\hat{\rho} = \frac{I_{M\delta}}{|M\delta|}$
this question goes back to Boltzmann and Gibbs

here:

- Finite size, explicit bounds
- Not necessarily translational invariant
- More general than microcanonical
canonical state $\hat{\tau} = e^{-\hat{H}/T}/Z$
for which states $\hat{\varrho}$ (and which I) is
\[\| \hat{\varrho}_C - \hat{\tau}_C \|_{tr} \leq \epsilon \]?
which states $\hat{\varrho}$ are locally thermal?

microcanonical states $\hat{\varrho} = \frac{\mathbb{1}_{M_\delta}}{|M_\delta|}$

with
\[M_\delta = \{|k\rangle : |E_k - Nu(T)| \leq \delta \sqrt{N} \}, \quad \frac{\log^{2d}(N)}{\sqrt{N}} \lesssim \delta \lesssim 1 \]

and I such that $I^d \lesssim \frac{(\epsilon^2 N)^{\frac{1}{d+1}}}{\ln(N)}$
canonical state $\hat{\tau} = e^{-\hat{H}/T}/Z$
for which states $\hat{\varrho}$ (and which I) is
$$\|\hat{\varrho}_C - \hat{\tau}_C\|_{tr} \leq \epsilon$$?
which states $\hat{\varrho}$ are locally thermal?
microcanonical states $\hat{\varrho} = \frac{\mathbb{1}_{M_\delta}}{|M_\delta|}$
with
$$M_\delta = \{ |k\rangle : |E_k - Nu(T)| \leq \delta \sqrt{N} \}, \quad \frac{\log^{2d}(N)}{\sqrt{N}} \lesssim \delta \lesssim 1$$
and I such that $I^d \lesssim \frac{(\epsilon^2 N)^{\frac{1}{d+1}}}{\ln(N)}$
$\delta = 0 :$ Eigenstate Thermalization
canonical state $\hat{\tau} = e^{-\hat{H}/T}/Z$

for which states $\hat{\varrho}$ (and which l) is

$$\| \hat{\varrho}_C - \hat{\tau}_C \|_{tr} \leq \epsilon$$

which states $\hat{\varrho}$ are locally thermal?

pure states $\hat{\varrho}$ drawn from the subspace spanned by M_δ:

$$\mathbb{P} \left[\| \hat{\varrho}_C - \text{(m.c.)}_C \|_{tr} \leq \sqrt{\epsilon} + 2^{l^d} / \sqrt{|M_\delta|} \right] \geq 1 - 2e^{-|M_\delta| \epsilon}$$

Popescu, Short, Winter (2005)
canonical state \(\hat{\tau} = e^{-\hat{H}/T}/Z \) for which states \(\hat{\rho} \) (and which \(I \)) is
\[
\| \hat{\rho}_C - \hat{\tau}_C \|_{\text{tr}} \leq \varepsilon
\]
which states \(\hat{\rho} \) are locally thermal?

pure states \(\hat{\rho} \) drawn from the subspace spanned by \(M_\delta \):
\[
\mathbb{P} \left[\| \hat{\rho}_C - (\text{m.c.})_C \|_{\text{tr}} \leq \sqrt{\varepsilon} + 2^d / \sqrt{|M_\delta|} \right] \geq 1 - 2e^{-|M_\delta|\varepsilon}
\]
Popescu, Short, Winter (2005)

\[
\geq 1 - 2 \exp \left[-\varepsilon \exp (S(\hat{\tau}) - \log^{2d}(N)\sqrt{N}) \right] =: p
\]
QBE
canonical state $\hat{\tau} = e^{-\hat{H}/T}/Z$ for which states $\hat{\varrho}$ (and which I) is

$$\|\hat{\varrho}_C - \hat{\tau}_C\|_{tr} \leq \epsilon$$

which states $\hat{\varrho}$ are locally thermal?
pure states $\hat{\varrho}$ drawn from the subspace spanned by M_δ:

$\hat{\tau}, M_\delta, \delta, I$ as before \rightarrow with probability at least p

$$\|\hat{\varrho}_C - \hat{\tau}_C\|_{tr} \leq \epsilon + 2^I d \exp \left[- (S(\hat{\tau}) - \log^{2d}(N)\sqrt{N}) \right]$$

canonical state $\hat{\tau} = e^{-\hat{H}/T}/Z$ for which states $\hat{\sigma}$ is
\[\| \hat{\sigma}_C - \hat{\tau}_C \|_{\text{tr}} \leq \varepsilon \]
which states $\hat{\sigma}$ are locally thermal?

$\hat{\tau}, l$ as before then those

- with small free energy $F_T(\hat{\sigma}) \lesssim F_T(\hat{\tau}) + \frac{T \varepsilon^2 (\varepsilon^2 N)^{\frac{1}{d+1}}}{\ln(N)}$

\[F_T(\hat{\sigma}) = \text{tr}[\hat{H}\hat{\sigma}] - TS(\hat{\sigma}) \]
canonical state $\hat{\tau} = e^{-\hat{H}/T}/Z$

for which states $\hat{\phi}$ is

$$\|\hat{\phi}_C - \hat{\tau}_C\|_{\text{tr}} \leq \epsilon$$

which states $\hat{\phi}$ are locally thermal?

$\hat{\tau}, M_\delta, \delta, I$ as before then those

- with small free energy $F_T(\hat{\phi}) \leq F_T(\hat{\tau}) + \frac{T\epsilon^2(\epsilon^2N)^{\frac{1}{d+1}}}{\ln(N)}$

or

- in microcanonical subspace with large entropy $S(\hat{\phi}) \geq \log(|M_\delta|) - \frac{\epsilon^2(\epsilon^2N)^{\frac{1}{d+1}}}{\ln(N)}$ (in fact, “almost all” states in this subspace)
\[\hat{\varrho}(t) = e^{-i t \hat{H}} \hat{\varrho}_0 e^{i t \hat{H}} \]

\[\hat{H} = \sum_k E_k |k\rangle \langle k| \]

\[\hat{\omega} = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} dt \, \hat{\varrho}(t) \]
\[\hat{\varrho}(t) = e^{-i t \hat{H}} \hat{\varrho}_0 e^{i t \hat{H}} \]

\[\hat{H} = \sum_k E_k |k\rangle \langle k| \]

\[\hat{\omega} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \! dt \, \hat{\varrho}(t) = \sum_k \langle k| \hat{\varrho}_0 |k\rangle |k\rangle \langle k| \]

\[\text{non-degen. energy gaps} \]

\[\lim_{T \to \infty} \frac{1}{T} \int_0^T \! dt \, \| \hat{\varrho}_C(t) - \hat{\omega}_C \|_\text{tr} \leq 2^{\! |C|} \sqrt{\text{tr}[\hat{\omega}^2]} \]
\[\hat{\mathcal{C}}(t) = e^{-it\hat{H}} \hat{\mathcal{C}}_0 e^{it\hat{H}} \]

\[\hat{H} = \sum_k E_k |k\rangle \langle k| \]

\[\hat{\omega} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \hat{\mathcal{C}}(t) = \sum_k \langle k| \hat{\mathcal{C}}_0 |k\rangle |k\rangle \langle k| \]

\[\lim_{T \to \infty} \frac{1}{T} \int_0^T dt \| \hat{\mathcal{C}}(t) - \hat{\omega}_C \|_{tr} \leq 2^{\frac{|C|}{2}} \sqrt{\text{tr}[\hat{\omega}^2]} \]

fraction of times for which
\[\| \hat{\mathcal{C}}(t) - \hat{\omega}_C \|_{tr} \leq \epsilon \]

is at least
\[1 - 2^{\frac{|C|}{2}} \sqrt{\text{tr}[\hat{\omega}^2]}/\epsilon \]

Linden, Popescu, Short, Winter (2008)
\[\hat{\varphi}(t) = e^{-it\hat{H}} \hat{\varrho}_0 e^{it\hat{H}} \]

\[\hat{H} = \sum_k E_k |k\rangle \langle k| \]

\[\hat{\omega} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \hat{\varphi}(t) = \sum_k \langle k| \hat{\varrho}_0 |k\rangle |k\rangle \langle k| \]

\[\lim_{T \to \infty} \frac{1}{T} \int_0^T dt \| \hat{\varphi}_C(t) - \hat{\omega}_C \|_{\text{tr}} \leq 2^{\|C\|} \sqrt{\text{tr}[\hat{\omega}^2]} \]

- Geometry irrelevant
- Even “global” observables
- Also “local” quenches

fraction of times for which
\[\| \hat{\varphi}_C(t) - \hat{\omega}_C \|_{\text{tr}} \leq \epsilon \] is at least \[1 - 2^{\|C\|} \sqrt{\text{tr}[\hat{\omega}^2]} / \epsilon \]

Linden, Popescu, Short, Winter (2008)
\(\hat{\varrho}(t) = e^{-i t \hat{H}} \hat{\varrho}_0 e^{i t \hat{H}} \)

\(\hat{H} = \sum_k E_k |k\rangle \langle k| \)

\(\hat{\omega} = \lim_{T \to \infty} \frac{1}{T} \int_0^T \! dt \, \hat{\varrho}(t) = \sum_k \langle k| \hat{\varrho}_0 |k\rangle |k\rangle \langle k| \)

\[\lim_{T \to \infty} \frac{1}{T} \int_0^T \! dt \| \hat{\varrho}_C(t) - \hat{\omega}_C \|_{\text{tr}} \leq 2^{|C|} \sqrt{\text{tr}[\hat{\omega}^2]} \]

- Purity?
- Thermal?
- Time scale?

fraction of times for which
\[\| \hat{\varrho}_C(t) - \hat{\omega}_C \|_{\text{tr}} \leq \epsilon \] is at least
\[1 - 2^{|C|} \sqrt{\text{tr}[\hat{\omega}^2]} / \epsilon \]

Linden, Popescu, Short, Winter (2008)
Local Hamiltonian, sufficiently weakly correlated initial state: $\text{tr}[\hat{\omega}^2] \lesssim \frac{\ln^{2d}(N)}{\sqrt{N}}$.
Local Hamiltonian, sufficiently weakly correlated initial state:
\[\text{tr}[\hat{\omega}^2] \lesssim \frac{\ln^{2d}(N)}{\sqrt{N}}. \]

integrable: no thermalization (instead generalized Gibbs ensemble)
local Hamiltonian, sufficiently weakly correlated initial state:
\[\text{tr}[\hat{\omega}^2] \lesssim \frac{\ln^{2d}(N)}{\sqrt{N}} \]

integrable: no thermalization (instead generalized Gibbs ensemble)

most Hamiltonians that are unitarily equivalent to a local Hamiltonian lead to fast thermalization*

*the subsystem spends most of the times in \([0, N^{\frac{1}{3a}}] \) close to the maximally mixed state
local Hamiltonian, sufficiently weakly correlated initial state: \(\text{tr}[\hat{\omega}^2] \lesssim \frac{\ln 2^d (N)}{\sqrt{N}} \)

integrable: no thermalization (instead generalized Gibbs ensemble)

most Hamiltonians that are unitarily equivalent to a local Hamiltonian lead to fast thermalization*

transl. inv., thermodynamic limit: entropic condition on initial state implies thermalization

QBE non-t.i., finite size

*the subsystem spends most of the times in \([0, N^{\frac{1}{2d} - \frac{1}{2}}]\) close to the maximally mixed state