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Abstract
Let νf be the Gibbs measure associated to a regular function f on a one-sided
topologically mixing subshift of finite type. Introducing a parameter λ, we
consider the behaviour of the family (νλf ), as λ → +∞. When f depends on
p coordinates, we show that the measures (νλf ) converge. Moreover, the limit
measure belongs to a finite set dependent only on p and on the subshift. The
proof is a consequence of a general statement of Analytic Geometry.

Mathematics Subject Classification: 14B15, 32B20, 37A60.

1. Presentation

A motivation for the present paper is the study of maximizing measures. We briefly recall
the context. Let (X, T ) be a topological dynamical system, that is a compact metric space
X with a continuous and surjective transformation T . Fixing some continuous function f on
X, we study the invariant probability measures µ that maximize

∫
f dµ and their stochastic

properties. Using Birkhoff’s Ergodic Theorem, this problem is equivalent to finding the points
in X that maximize the growth of the ergodic sums of f . We mention the important example
of Bousch [1] who has considered the family of functions x �→ cos(2π(x + t)), where t is a
parameter, on X = [0, 1) and with the transformation T x = 2xMod(1). The result is that for
every t , the maximizing measure is unique and Sturmian. This measure is also periodic for
almost every t .

We consider here the construction of maximizing measures. Following Conze–Guivarc’h
[4], one way is to proceed by freezing the system. More precisely, when there exists a finite
Markov partition as in the previous situation on the circle, we can assume that the problem is
given in symbolic dynamics, that is in the context of a subshift of finite type � over a finite
alphabet. If a function f is regular, we can introduce the Gibbs measure νf associated to f ,
that is the unique measure realizing the maximum in the variational principle. Considering the
measures (νλf )λ→+∞ where λwould be the inverse of the temperature in Statistical Mechanics,
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one can derive from the variational principle, that the cluster values of (νλf ) are maximizing
measures for f and that they have maximal entropy in this set of measures (see Conze–
Guivarc’h [4]). If the measures νλf were converging as λ → +∞, one would obtain a ‘natural’
way of constructing a maximizing measure for a regular function on the subshift �.

This problem is related to the behaviour of Markov chains with ‘rare transitions’ on a finite
set. The study of such chains was initiated by Freidlin and Wentzell [6] and then extended by
Catoni–Cerf [3] or Trouvé [11]. The starting assumption is that the transition rate between two
states x and y has order C(x, y) exp(−λV (x, y)), where V is some rate function. Exponential
rates come naturally in the discrete modelization of complex phenomena such as the rate of
failure of a machine. A preliminary study concerns the limiting behaviour of the invariant
measure at low temperature. On that question, an essential tool appears to be the ‘matrix tree
theorem’ and its corollaries such as lemma (3.6) in Catoni–Cerf [3], as it gives a formula with
non-negative quantities for the invariant distribution. In the context of a subshift of finite type
over a finite alphabet, we cannot use directly the matrix tree theorem, as the transition laws
are defined by implicit quantities, whose behaviour at low temperatures is not clear a priori.

We will prove that all the transition laws do admit an equivalent of the form C exp (−λV )
and in fact our result is the requirement for the development, in the context of Gibbs measures
on subshifts of finite type, of a similar study as the one for Markov chains with rare transitions.
We will then obtain that for every locally constant function f , the Gibbs measures (νλf )λ→+∞
converge. The limit measure is maximizing for f and belongs to a finite set dependent only
on the subshift and the rank of the function. The proof we provide relies purely on techniques
relevant to Analytic Geometry.

2. Introduction and reduction of the problem

We fix some integer d � 2 and introduce � = {1, . . . , d}N with its usual distance. For x ∈ �
and any integer p � 1, let Cp(x) be the cylinder of size p associated to x, i.e.

Cp(x) = {y ∈ � | yi = xi, 0 � i � p − 1}.
We write Bp for the finite Boole algebra generated by the cylinders of size p and B for the
σ -algebra generated by all the cylinder sets. Let � = (�, T ,A) be a one-sided topologically
mixing subshift of finite type, where T is the shift on � and A is a transition matrix (with
entries equal to zero or one) giving the allowed transitions and such that AN0 has strictly
positive entries for some integer N0 � 1. Given a locally constant function f on �, we write
νf for the corresponding Gibbs measure. We will prove the following.

Theorem 2.1. Let � be a one-sided topologically mixing subshift of finite type.

(1) Let f be Bp-measurable. Then, the measures (νλf ) converge weakly as λ → +∞ to a
Markovian measure written ν∞,f .

(2) The set M(�, p) := {ν∞,f | f is Bp-measurable} is finite.

Remark. The second part of theorem 2.1 will follow directly from the proof, but without
control on M(�, p). Anyway, the cardinal of M(�, p) seems to grow very fast with p, as
suggested by the example of the next section.

First step. We recall a general frame for the construction of the Gibbs measure νf in the
particular case whenf is locally constant (see, e.g. Bowen [2] or Denker–Grillenberg–Sigmund
[5]). Then, let f be Bp-measurable for some integer p � 1. Up to conjugating the system
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by increasing the alphabet (see [5]), we suppose that f depends on two coordinates. We then
introduce the transfer matrix Mf associated to f and which is defined by

(Mf )(i, j) =
{

ef (j,i), if A(j, i) = 1,
0, if A(j, i) = 0.

As the matrix AN0 has strictly positive entries for some N0 � 1, it is also the case for (Mf )
N0 .

Therefore,Mf admits a unique strictly positive eigenvector H̃f with ‖H̃f ‖1 = 1 and a strictly
positive eigenvalue es(f ). With D = diag(H̃f ), we then consider the stochastic matrix,

Qf = e−s(f ) (D−1MfD
)
.

Writing Hf for the strictly positive eigenvector of tQf such that ‖Hf ‖1 = 1 and (Xi)i�0 for
the coordinate applications, we have that νf is the Markovian measure on � such that for any
(xi)0�i�n−1 with A(xl−1, xl) = 1, 1 � l � n− 1,

νf {X0 = x0, . . . , Xn−1 = xn−1} = Hf (xn−1)Qf (xn−1, xn−2) · · ·Qf (x1, x0).

Second step. We now reduce theorem 2.1 to a rather general statement on analytic functions,
independent of the above problem. We consider the set S ⊂ Md(R) of positive matrices B
with the same non-zero elements as (tA), that is such that B(i, j) > 0 if A(j, i) = 1 and
B(i, j) = 0 if A(j, i) = 0. This is also the form of the previous matrix Mf .

If B ∈ S, then, let H̃ (B), with ‖H̃ (B)‖1 = 1, be the unique positive eigenvector
of B and write es(B) for the corresponding eigenvalue. Similarly, we define
Q(B) = e−s(B)diag(H̃ (B))−1B diag(H̃ (B)) and H(B) as the unique strictly positive
eigenvector of tQ(B), with ‖H(B)‖1 = 1. We then introduce on S the application ζ into
Md(R)× Rd :

ζ : B �→ (Q(B),H(B)). (2)

We extend ζ on Md(R) by 0. The picture is as follows: there exists a stratified structure
determined by ζ , in the set of positive matrices with the same non-zero entries as (tA). This
will be given by the ‘preparation theorem’ for subanalytic functions applied to ζ . We will give
a version of that theorem in section 4, and we postpone the required definitions to that section
as well.

Remark. Although the needed class here is the semialgebraic one, we provide a statement
available for the general subanalytic class, as the techniques are similar.

Lemma 2.2. The map ζ defined in (2) is semialgebraic and thus subanalytic.

Theorem 2.3. Let ζ : Rn+1 → Rm be a subanalytic application and η : R × Rn+1 → Rn+1 be
the map (x, ε = (εi)) �→ (xεi ). Then, there exists a finite set S̃ of real numbers such that for
every ε ∈ Rn+1 and as x → 0, each coordinate of (ζ ◦ η)(x, ε) is either ultimately 0 or admits
an equivalent of the form uxv , with u ∈ S̃ and v = ∑

pk/qkεk , where all pk/qk are rationals
and in S̃.

Proof of theorem 2.1. Let n+1 be the number of non-zero entries of any matrix in S. We order
them and denote them by (uk(B))1�k�n+1 for any matrix B ∈ S, independently on B ∈ S.
Now, let f be defined on � and let it depend on two coordinates. Fixing λ > 0, each matrix
Mλf is in S and any non-zero coordinate of Mλf has the form uk(Mλf ) = exp (λf (j, i)). We
then set x = exp(−λ) and εk = −f (j, i). The path of (Mλf )λ→+∞ in S is identified to the
path (xεk )x→0+ in Rn+1.

We then apply lemma 2.2 and theorem 2.3 to ζ and (x, (εk)). As a consequence, we
obtain that the entries of Qλf and Hλf converge and that the limit values belong to a finite set
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independent of f , as the number of u and (pk/qk) is finite. This concludes the proof of the
theorem. �

3. An example

Before developing the analytic tools we will use, we consider the example of the full shift on
{1, 2}N with a function f depending on two coordinates. In this case, the convergence of (νλf )
can be proved by direct calculations. In each case, we indicate the limitQ∞,f of the stochastic
matrices Qλf and the limit H∞,f of the initial distributions Hλf . For convenience, we write
fij in place of f (i, j) for 1 � (i, j) � 2 and set φ = (1 +

√
5)/2. We obtain the following.

(1) If f11 = f22 = 1

2
(f12 + f21), then, Q∞,f =

(
1
2

1
2

1
2

1
2

)
and H∞,f =

(
1
2
1
2

)
.

(2) If f11 = f22 >
1

2
(f12 + f21), then, Q∞,f =

(
1 0
0 1

)
and H∞,f =

(
1
2
1
2

)
.

(3) If f11 < f22 = 1

2
(f12 + f21), then,Q∞,f =

(
0 1

1/φ2 1/φ

)
andH∞,f =

(
1/(1 + φ2)

φ2/(1 + φ2)

)
.

(4) If f22 > max

{
f11,

1

2
(f12 + f21)

}
, then, Q∞,f =

(
0 1
0 1

)
and H∞,f =

(
0
1

)
.

(5) If f22 < f11 = 1

2
(f12 + f21), then, Q∞,f =

(
1/φ 1/φ2

1 0

)
and H∞,f =

(
φ2/(1 + φ2)

1/(1 + φ2)

)
.

(6) If f11 > max

{
f22,

1

2
(f12 + f21)

}
, then, Q∞,f =

(
1 0
1 0

)
and H∞,f =

(
1
0

)
.

(7) If max{f11, f22} < 1

2
(f12 + f21), then, Q∞,f =

(
0 1
1 0

)
and H∞,f =

(
1
2
1
2

)
.

Remark. We check that there are finitely many possible limit measures and that their
expressions do not depend on f . We also observe that the limit may have non-zero entropy,
as in the case (1) which corresponds to the measure of Parry–Renyi (f = 0). It can also be
periodic or be a strict barycentre of periodic measures and thus not ergodic.

4. The theorem of ‘preparation’ of subanalytic functions

We will now prove lemma 2.2 and theorem 2.3. To begin the study, we introduce the general
class of subanalytic functions. We will then need some form of implicit function theorem
adapted to such a class of functions and this will be the theorem of preparation.

As references, we mention Gabrielov [7], Lion [9] and Parusiński [10]. We begin with a
few definitions. First we embed algebraically R into the compact P1 by the map x �→ [x : 1]
and see Rn as a subset of (P1)

n. Any real analytic function will simply be called analytic.

Definition 4.1.

(1) A subset X ⊂ Rn is semi-analytic if for all a in (P1)
n, there exists a neighbourhood U of

a, and a finite number of analytic functions fi,j , gi,j , (i, j) ∈ I × J such that

X ∩ U =
⋃
i∈I

(⋂
j∈J

{x ∈ U | fi,j (x) = 0, gi,j (x) > 0}
)
.
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A subset X ⊂ Rn is semi-algebraic if we assume that the functions fi,j , gi,j are
polynomials.

(2) A subset E ⊂ Rn is global subanalytic if it is the image of a semi-analytic set of Rn+m

by the canonical projection of Rn × Rm on Rn. A function f : Rn → Rm, is global
subanalytic if its graph is global subanalytic in Rn × Rm.

Now, let A be any family of functions from Rn into R.
(3) A set E ⊂ Rn is an A-set if there exists (fi,j , gi,j ) in A, with (i, j) ∈ I × J where I

and J are finite, such that

E =
⋃
I

(⋂
J

{fi,j = 0, gi,j > 0}
)
.

(4) An A-cylinder C ⊂ Rn+1 is a set such that there exists an A-set B ⊂ Rn called the
basis, ϕ and possibly ψ in A such that C has one of the following forms:

C = {(x, y) | x ∈ B, ϕ(x) < y < ψ(x)}, (then ϕ < ψ on B)

C = {(x, y) | x ∈ B, y < ϕ(x)},
C = {(x, y) | x ∈ B, y > ϕ(x)},
C = {(x, y) | x ∈ B, y = ϕ(x)}.

Remark 1. A theorem of Gabrielov on the complementary [7] says that the global subanalytic
sets are stable by complementation and thus form a Boole algebra. It is also stable by projection.
The semi-algebraic sets have the same properties by a theorem of Tarski–Seidenberg, which
states stability by projection, whereas the semi-analytic sets are not stable by projection.

Remark 2. Subanalytic sets are an example of o-minimal family of subsets of Rn, i.e. one
for which ‘good’ topological and geometric results can be proved. For global subanalytic
functions, Parusiński [10] has shown a theorem of preparation. As in the implicit functions
theorem, considering any function ϕ = ϕ(x1, . . . , xn, y) and the equation ϕ = 0 in y, to
‘prepare’ ϕ in the variables (x1, . . . , xn, y) means to decompose Rn+1 in cylinders on which
ϕ admits a principal part of the same class as ϕ. To make this statement precise, we now
introduce the set of ‘reduced functions’.

Definition 4.2. We define inductively on n � 0, the set Rn of ‘reduced functions’ from Rn

into R:

(a) The set R0 is the set of real constants.
(b) Assume that Rn has been defined. Then, f ∈ Rn+1 if the following two conditions hold:

(1) There exists a finite partition of Rn+1 in Rn-cylinders and each cylinder of the partition
is contained in Rn × [−1, 1] or in Rn ×{|y| � 1}, calling y the last variable of Rn+1.

(2) On each cylinder C of the previous partition, the function f or 1/f is equal to

αq/pAU(ψ), with ψ = (
φ1, . . . , φs, α

1/p, β1/p
)
, where (3)

• the functions α and β are bounded onC and have the respective forms (y ′ −θ)/a
and b/(y ′ − θ) or, on the contrary, the functions A, a, b, θ, (φi)1�i�s belong
to Rn and are bounded on the basis B of the cylinder C. One has y ′ = y

if C ⊂ Rn × [−1, 1] and y ′ = 1/y if C ⊂ Rn × {|y| � 1}. The function
θ is either identically 0 on C or there exists a constant c > 0 such that
|y ′|/c � |θ(x)| � c|y ′| on the whole cylinder C.
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• the quantities p and q are strictly positive integers.
• the function U is analytic without zero on a neighbourhood of the compact ψ(C)

in (P1)
s+2.

Such a reduction is adapted for recursive proofs as we will see later. We use the following
result, which is due to Parusiński [10]. For the form presented here and for a proof, we refer
to [9].

Theorem 4.3. A real global subanalytic function is reduced.

5. Proof of lemma 2.2 and theorem 2.3

Proof of lemma 2.2. We consider, for example, the map B �→ H(B) on the cylinder S and
call it ξ . Recall that any unitary polynomial of degree d is seen as an element of Rd and a
matrix of size d × d as an element of Rd2

. We have to show that {(B, ξ(B)) | B ∈ S} is
semialgebraic. Consider first the subset D1 of Rd+1 defined by

D1 := {(P, r) , such that (C)}. (4)

where (C) is the condition ‘P is a real unitary polynom of degree d and r is the greatest real
root of P ’. We prove that this set is semialgebraic. This way, introduce for 1 � l � d,

D1,l := {(P, u1, . . . , ul) | P(u1) = · · · = P(ul) = 0, u1 < · · · < ul}.
The setD1,l is the set of real unitary polynoms P of degree d together with l distinct real roots
of P . It is semialgebraic. By projection, the set

D2,l := {(P | ∃(ui)1�i�l , (P , u1, . . . , ul) ∈ D1,l}
is also semialgebraic by the theorem of Tarski–Seidenberg. Then, defineD3,l := D2,l−D2,l+1.
Then,D3,l is also semialgebraic. It is the set of polynoms that have exactly l distinct real roots,
without considering their multiplicity. Finally, define

D4,l := {(P, u1, . . . , ul−1, r) | P ∈ D3,l , u1 < · · · < ul−1 < r,

P (u1) = · · · = P(ul−1) = P(r) = 0}
and by projection

D5,l = {(P, r) | ∃(ui)1�i�l−1, (P, u1, . . . , ul−1, r) ∈ D4,l}
is semialgebraic. It is, therefore, also the case for the setD1 defined in (4), asD1 = ∪1�l�dD5,l .

Consequently, writing χ(B) for the characteristic polynomial of the matrix B, we deduce
that the set D2 = {(B, ρ) | (χ(B), ρ) ∈ D1} is semialgebraic. Hence, it is also the case for
the set {(B, ξ(B)) | B ∈ S} as it is a projection of

{(B,U, V, ρ) | B ∈ S, (B, ρ) ∈ D2, BU = ρU, U > 0, ‖U‖1 = 1,tQ(B)V = ρV,

V > 0, ‖V ‖1 = 1}.
The other coordinate applications of ζ can be treated similarly. �

Proof of theorem 2.3. Let ξ be a coordinate of the application ζ . From the preparation
theorem 4.3, there exists a finite partition of Rn+1 in Rn-cylinders such that on each cylinder
C, ξ or 1/ξ has the form described in (3). Then, set E(n + 1) = {ξ} and let E(ξ, n + 1, n)
be the finite set of all the functions in Rn, which intervene in the decomposition of ξ or 1/ξ

Author: Please check change
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on each cylinder and of all the functions of Rn used to define those cylinders. Recursively for
0 � p � n, we set

E(p) =
⋃

ϕ∈E(p+1)

E(ϕ, p + 1, p),

where E(ϕ, p + 1, p) is defined in the same way as E(ξ, n + 1, n).
We remark thatE(0) is a finite set of real constants. We will prove by increasing induction

on 0 � p � n + 1, the following claim H(p):
‘There exists a finite set L(p) of linking relations over Q, a finite setA(p) of non-zero
real constants and a finite constant Mp > 0, all independent of the (εi), such that
if (ε1, . . . , εp) 
∈ L(p), then, for all ϕ in E(p) and as x → 0, ϕ(xε1 , . . . , xεp )

is either stationary at 0 or equivalent to a quantity uxv , where u ∈ A(p) and
v = (1/q)

∑p

l=1 plεl , where |pl|, |q| � Mp, q 
= 0.’

We remark that H(0) is verified with A(0) = E(0)/{0}, M0 = 0 and L(0) empty.
Assuming H(p), let us prove H(p+1). Then, let ϕ ∈ E(p+1) and consider its decomposition
in Rp-cylinders. We will first build a finite set L′(p + 1) of linking relations over Q for
(εi)1�i�p+1 such that the path (xε1 , . . . , xεp , xεp+1) ends in a unique cylinder, as x → 0.
Indeed, each cylinder C in Rp+1 and involved in the decomposition of ϕ has, for example, the
following form, where we write (z, y) for the coordinates in Rp × R:

C = {(z, y) | z ∈ B, h1(z) < y < h2(z)}, h1, h2 ∈ E(p)
B =

⋃
I

⋂
J

{z | fi,j (z) = 0, gi,j (z) > 0}, fi,j , gi,j ∈ E(p), with I and J finite.

Consider the case of the basis B. Using H(p), any function fi,j is either stationary at 0 or
equivalent to a quantity ui,j xvi,j with ui,j ∈ A(p) and vi,j = (1/q)

∑p

l=1 plεl , |pl|, |q| � Mp,
q 
= 0. The same remark holds for the (gi,j )s. Therefore, if x is small enough, the conditions
defining B are either always true or always false for the path (xε1 , . . . , xεp ). Similarly, for the
condition

h1(x
ε1 , . . . , xεp ) < xεp+1 < h2(x

ε1 , . . . , xεp ),

the functions hi are either stationary at 0 or equivalent to some uixvi . To ensure that such a
condition is ultimately true or false, we impose on εp+1 the conditions εp+1 
∈ {0, v1, v2}. We
then define the finite set L′(p + 1) as the union L(p) and the conditions εp+1 
∈ {0, v1, v2},
for all the hi involved in the decomposition in Rp-cylinders of ϕ and for all ϕ in E(p + 1).
Consequently, for some fixed ϕ ∈ E(p + 1) and if (ε1, . . . , εp, εp+1) 
∈ L′(p + 1), the path
(xε1 , . . . , xεp , xεp+1) ends in a unique cylinder. We call it C and set z = (xε1 , . . . , xεp ) and
y = xεp+1 . From the preparation theorem (4.3), we have that for x small enough, the function
ϕ can be written as

(ϕ(z, y))±1 = αr/s(z, y ′) A(z) U(φ1(z), . . . , φs(z), α
1/s, β1/s) (5)

where α and β are, respectively, (y ′ − θ(z))/a(z) and b(z)/(y ′ − θ(z)) or the contrary, and
y ′, A, (φi)1�i�s , θ , a, b, r and s are as indicated in definition (4.2). Using H(p), we get that
the function θ is either stationary at 0 or equivalent to some uθxvθ with uθ and vθ as stated in
H(p). We then define L(p + 1) as the union of L′(p + 1) and the conditions {εp+1 = ±vθ } for
all the θ involved in the decomposition of ϕ in Rp-cylinders, for all ϕ in E(p + 1).

Consequently, if (ε1, . . . , εp, εp+1) 
∈ L(p + 1), then θ is 0 on C since it cannot have the
same order as y ′ when x → 0. Hence, in (5), the last two arguments of U , since they are
bounded on C, converge to bounded quantities (δ1, δ2), as x → 0. Moreover, as a and b are

Author: Please check 
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also stationary at 0 or equivalent to some quantities uaxva and ubxvb , we get that for i ∈ {1, 2},
δi ∈ {0, u−1/s

a , u
1/s
b }. Similarly, for 1 � i � s, φi is either stationary at 0 or equivalent to

some uφi x
vφi , with uφi and vφi as in H(p) and vφi � 0 as φi is bounded on the basisB. We also

have that A is either stationary at 0 or equivalent to some uAxvA . We now observe that ϕ(z, y)
may be stationary at 0 if A, a or b are stationary at 0. Finally, if ϕ(z, y) is not stationary at 0,
since U is continuous and between two strictly positive constants on the cylinder C, we obtain
that, as x → 0

(ϕ(z, y))±1 ∼ γ uAx
vA U (l1, . . . , ls , δ1, δ2) ,

where

γ =
(
x±εp+1

uaxva

)r/s
or

(
ubx

vb

x±εp+1

)r/s
, li = 0 or uφi for 1 � i � s and δi ∈ {0, u−1/s

a , u
1/s
b

}
.

The result then follows and the assertion H(p + 1) is proved. Consequently, the theorem
is shown for the (εi)1�i�n+1 that do not verify the finite number of linking relations over
Q contained in L(n + 1). Then, take one relation and assume, for example, that it has
the form εn+1 = (1/q)

∑n
l=1 plεl for some integers (pl)1�l�n, q 
= 0. Then, replace

ξ(xε1 , . . . , xεn , xεn+1) by ξ̃
(
xε

′
1 , . . . , xε

′
n

)
, where ε′

j = εj /q and ξ̃ = ξ ◦ η with

η(y1, . . . , yn) = (
y
q

1 , . . . , y
q
n ,
(
y
p1
1 , . . . , y

pn
n

))
.

The function ξ̃ is also global subanalytic. We can now make the same proof as above
with ξ̃ and the path (xε

′
1 , . . . , xε

′
n ). As there is one dimension less, the result follows

recursively. �
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